Regression models for the value of rice production in Rio Grande do Sul

Authors

Keywords:

Gamma distribution, generalized linear model, linear model, rice

Abstract

Rice is the second most consumed grain in the world. In Brazil, Rio Grande do Sul (RS) is the largest producer of paddy rice. Therefore, the objective of this study is to evaluate the factors that influence the production value of this cereal. To explain the value of rice production, production variables obtained from the Department of Economics and Statistics website and derived variables taken from the Brazilian Daily Weather Gridded Data website were used, referring to the year 2019. The variables found present a non-normal and heteroscedastic distribution, justifying the use of the generalized linear regression technique. The selection of variables for the models was done using the stepwise method. The models found demonstrated that the annual average of solar radiation and the annual average of rainfall transfer influence the value of rice production in RS, as well as in other studies. However, these models may not be suitable to capture the non-linear relationship between grain production value and variables such as climate and production.

References

ATLAS. Arroz: O Rio Grande do Sul é o maior produtor de arroz em casca do Brasil. 7ª ed. 2022. Acesso em: 04 de out. 2022. Disponível em: https://atlassocioeconomico.rs.gov.br/arroz

CORDEIRO, G. M.; DEMÉTRIO, C. G. Modelos Lineares Generalizados. Minicurso para o 12º SEAGRO e a 52ª Reunião Anual da RBRAS UFSM, Santa Maria, RS,2012. Disponível em: https://docs.ufpr.br/~lucambio/%20CE225/2S2009/livroSeagro.pdf

DA SILVA, E. V.; JACOBI, L. F. Regressão linear e não linear aplicado ao estudo de casos de AIDS na Região Norte do Brasil. Ciência E Natura, v. 42, e27, 2020. https://doi.org/10.5902/2179460X40535

DEEDADOS (2023). Departamento de economia e estatística dados abertos. Disponível em: https://dados.fee.tche.br/

EKANAYAKE, E., WICKRAMASINGHE, L., WELIWATTA, R. Use of regression techniques for rice yield estimation in the north-western province of sri lanka. Ceylon journal of science, v. 50, n. 4, p. 439–447, 2021. https://doi.org/10.4038/cjs.v50i4.7942

MATEUS, W. S.; MATEUS, A. L. S. S.; BUENO FILHO, J. S. DE S. Avaliação por regressão linear múltipla para valor de imóveis residenciais. Sigmae, v. 8, n. 2, p. 784–787, 2019. https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/987

MCCULLAGH, P.; NELDER, J. A. Generalized linear models, 2nd edidion. Chapman and Hall, London, 1989, 526 p.

MONTGOMERY, D. C; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 4a edição. Rio de Janeiro: LTC Editora, 2009, 514 p.

NUGRAHANI, I. D.; SUSANTI, Y.; QONA’AH, N. Modeling of rice production in indonesia using robust regression with the method of moments (mm) estimation. Nusantara science and technology proceedings, v. 21, p. 79–87, 2021. http://dx.doi.org/10.11594/nstp.2021.1111

R CORE TEAM.R: A language and environment for statistical computing. R Foundation forStatistical Computing, Vienna, Austria. 2022. Disponível em: https://www.r-project.org/

RIBEIRO et al. Soybean production value in the Rio Grande do Sul under the GAMLSS framework. Communications in statistics: case studies, data analysis and applications. v. 7, n. 2, p. 146-165, 2021. http://dx.doi.org /10.1080/23737484.2020.1852131

SILVA, L. E. M. DA; JACOBI, L. F.; LÚCIO, A. D. Analysis of cases of death due to stroke in the state of Rio Grande do Sul from 1979 to 2014. Sigmae, v. 8, n. 2, p. 274–281, 2019. https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/954

SILVIO STEINMETZ, J. B. D. S.; DEIBLER, N. A. Estimativa da produtividade de arroz irrigado em função da radiação solar global e da temperatura mínima do ar. Ciência Rural, Santa Maria, v. 43, n. 2, p. 206-211, 2013. https://doi.org/10.1590/S0103-84782013000200003

URRUTIA, J. D. et al. Forecasting rice production in luzon using integrated spatio-temporal forecasting framework. Em: AIP Conference Proceedings, AIP Publishing LLC, v. 2192, p. 09004, 2019. http://dx.doi.org /10.1063/1.5139184

WICKRAMASINGHE, L.; JAYASINGHE, J.; RATHNAYAKE, U. Relationships between climatic factors to the paddy yield in the north-western province of sri lanka. Em: International Research Conference on Smart Computing and Systems Engineering (SCSE), IEEE, p. 223–227, 2020. http://dx.doi.org /10.1109/SCSE49731.2020.9313047

XAVIER, A. C. Brazilian daily weather gridded data (br-dwgd), 2023. Disponível em: https://sites.google.com/site/alexandrecandidoxavierufes/brazilian-daily-weather-gridded-data

Published

04-11-2024

How to Cite

Custódio, I. R., Mateus, A. L., & Jacobi, L. F. (2024). Regression models for the value of rice production in Rio Grande do Sul. Sigmae, 13(4), 88–101. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/2525

Issue

Section

Applied Statistics