Certas Integrais de Funções Hipergeométricas Generalizadas e Hipergeométricas Confluentes

Autores

  • Dinesh Kumar Department of Mathematics & Statistics, Jai Narain Vyas University, Jodh-pur 342011, India

Palavras-chave:

Função beta generalizada, Função Gamma generalizada, Funções hipergeométricas generalizadas de Gauss, Função hipergeométrica confluente

Resumo

Neste artigo, pretendemos estabelecer certas fórmulas integrais finitas para as funções 
hipergeométricas generalizadas de Gauss e hipergeométricas confluentes. Além disso, a
função $F^{(\alpha ,\beta)}_p(a,b;c;z)$ que ocorre em cada um dos nossos resultados
principais pode ser reduzida, em vários casos especiais, a funções mais simples como
a clássica Função hipergeométrica de Gauss $_{2}F_{1}$, função hipergeométrica confluente
de Gauss $\varphi^{(\alpha ,\beta)}_p(b;c;z)$ função e função hipergeométrica generalizada
$_{p} F_{q}$. Um exemplo de algumas dessas aplicações interessantes de nossas principais
fórmulas integrais é apresentado brevemente.
 
 
 
 
 
 
 

Biografia do Autor

Dinesh Kumar, Department of Mathematics & Statistics, Jai Narain Vyas University, Jodh-pur 342011, India

Research Associate

Referências

M.A. Chaudhry and S.M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99-124.

M.A. Chaudhry, A. Qadir, M. Raque and S.M. Zubair, Extension of Eulers beta function, J. Comput. Appl. Math., 78 (1997), 19-32.

M.A.Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended hypergeometric and conuent hypergeometric functions, Appl. Math. and Comput., 159 (2004), 589-602.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York-Toronto-London, 1953.

I.I. Guseinov and B.A. Mamedov, Unied treatment for the evaluation of generalized complete and incomplete gamma functions, J. Comput. Appl. Math., 202 (2007), 435-439.

M.E. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge University Press, 2005.

K. Katayama, A generalization of gamma functions and Kroneckers limit formulas, J. Number Theory, 130 (2010), 1642-1674.

V.S. Kiryakova, Generalized fractional calculus and applications, Pitamat Research Notes in Mathematics, John Wiley and Sones, New York, 301, 1994.

K. Kobayashi, On generalized gamma functions occurring in diraction theory, J. Phys. Soc. Japan, 61 (1991), 1501-1512.

M.A. Ozaraslan, Some remark on extended hypergeometric, extended conuent hypergeometric and extended appell's function, J. of Comput. Anal. and Appl., 14(6) (2012), 1148-1153.

E. Ozergin, Some properties of hypergeometric functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.

E. Ozergin, M.A. Ozaraslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235(16) (2011), 4601-4610.

E.D. Rainville, Special functions, The Macmillan Company, New York, 1960.

R.K. Saxena and D. Kumar, Generalized fractional calculus of the Aleph function involving a general class of polynomials, Acta Mathematica Scientia, 35(5) (2015), 1095-1110.

V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India Sect, A51 (2001), 366-375.

H.M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5 (2011), 390-444.

H.M. Srivastava, M.A. Chaudhry and R.P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct., 23 (2012), 659-683.

H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Limited, 1985.

H.M. Srivastava, R.K. Saxena and C. Ram, A unied presentation of the gamma-type functions occurring in diraction theory and associated probability distributions, Appl. Math. Comput., 162 (2005), 931947.

R. Srivastava, Some properties of a family of incomplete hypergeometric functions, Russian J. Math. Phys., 20 (2013), 121-128.

Downloads

Publicado

21-08-2017

Como Citar

Kumar, D. (2017). Certas Integrais de Funções Hipergeométricas Generalizadas e Hipergeométricas Confluentes. Sigmae, 5(2), 8–18. Recuperado de https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/520

Edição

Seção

Matemática Pura