Certain Integrals of Generalized Hypergeometric and Confuent Hypergeometric Functions
Palabras clave:
Generalized Beta functions, Generalized Gamma functions, Generalized Gauss hypergeometric functions, Confluent hipergeometric functionResumen
In this paper, we aim at establishing certain finite integral formulas for the generalized Gauss hypergeometric and confluent hypergeometric functions. Furthermore, the$F^{(\alpha ,\beta)}_p(a,b;c;z)$-function occurring in each of our main results can be reduced, under variousspecial cases, to such simpler functions as the classical Gauss hypergeometric function $_{2}F_{1}$, Gauss confluent hypergeometric function $\varphi^{(\alpha ,\beta)}_p(b;c;z)$ function and generalized hypergeometric function $_{p}F_{q}$. A specimen of some of these interesting applications of our main integral formulas are presented briefly.
Citas
M.A. Chaudhry and S.M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99-124.
M.A. Chaudhry, A. Qadir, M. Raque and S.M. Zubair, Extension of Eulers beta function, J. Comput. Appl. Math., 78 (1997), 19-32.
M.A.Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended hypergeometric and conuent hypergeometric functions, Appl. Math. and Comput., 159 (2004), 589-602.
A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York-Toronto-London, 1953.
I.I. Guseinov and B.A. Mamedov, Unied treatment for the evaluation of generalized complete and incomplete gamma functions, J. Comput. Appl. Math., 202 (2007), 435-439.
M.E. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge University Press, 2005.
K. Katayama, A generalization of gamma functions and Kroneckers limit formulas, J. Number Theory, 130 (2010), 1642-1674.
V.S. Kiryakova, Generalized fractional calculus and applications, Pitamat Research Notes in Mathematics, John Wiley and Sones, New York, 301, 1994.
K. Kobayashi, On generalized gamma functions occurring in diraction theory, J. Phys. Soc. Japan, 61 (1991), 1501-1512.
M.A. Ozaraslan, Some remark on extended hypergeometric, extended conuent hypergeometric and extended appell's function, J. of Comput. Anal. and Appl., 14(6) (2012), 1148-1153.
E. Ozergin, Some properties of hypergeometric functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
E. Ozergin, M.A. Ozaraslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235(16) (2011), 4601-4610.
E.D. Rainville, Special functions, The Macmillan Company, New York, 1960.
R.K. Saxena and D. Kumar, Generalized fractional calculus of the Aleph function involving a general class of polynomials, Acta Mathematica Scientia, 35(5) (2015), 1095-1110.
V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India Sect, A51 (2001), 366-375.
H.M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5 (2011), 390-444.
H.M. Srivastava, M.A. Chaudhry and R.P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct., 23 (2012), 659-683.
H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Limited, 1985.
H.M. Srivastava, R.K. Saxena and C. Ram, A unied presentation of the gamma-type functions occurring in diraction theory and associated probability distributions, Appl. Math. Comput., 162 (2005), 931947.
R. Srivastava, Some properties of a family of incomplete hypergeometric functions, Russian J. Math. Phys., 20 (2013), 121-128.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).