Theoretical Increase About Interpolation Involving Finite Diferences

Autores/as

  • Victor Pires Domingues Universidade Estácio De Sá

Palabras clave:

Arithmetic Progressions, Finite Dierences, Gregory-Newton, Polynomial Interpolation.

Resumen

When we know the values of a function whose abscissa are equally spaced, we can utilize the traditional method, namely, that of Gregory-Newton, in order that we can determine  the polynomial interpolation. However, in this paper we present an alternative technique .Will be  seen, for example, under special conditions for sequences dened of recurrent form, in arithmetic  progressions of higher order, which are performed only n2- n operations.

Biografía del autor/a

Victor Pires Domingues, Universidade Estácio De Sá

Graduado em licenciatura de matemática.

Citas

BARBOSA, R.M. Cálculo Numérico: Interpolação Polinomial, 2.ed, São Paulo: Livraria Nobel, 1973.

BARBOSA, R.M.; BELLOMO, D.P.; FILHO, E.A. Cálculo Numérico: Cálculo De Diferenças Finitas. São Paulo: Livraria Nobel, 1973.

Descargas

Publicado

27-01-2023

Cómo citar

Domingues, V. P. (2023). Theoretical Increase About Interpolation Involving Finite Diferences. Sigmae, 8(1), 35–39. Recuperado a partir de https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/886

Número

Sección

Pure Mathematics