A Trigonometry Approach to Balancing Numbers and Their Related Sequences

Autores/as

  • Prasanta Kumar Ray IIIT BhubaneswarIndia

Palabras clave:

Triangular numbers, Balancing numbers, Lucas-balancing numbers, Cobalancing numbers, Recurrence relation

Resumen

The balancing numbers satisfy the second order linear homogeneous dierence equation Bn+1 = 6Bn - Bn-1, on the other hand the Fibonacci numbers are solution of the second order linear homogeneous dierence equation Fn+1 = Fn + Fn-1; where Bn and Fn denote the nth balancing number and nth Fibonacci number respectively. In a paper, Smith introduce Fibonometry in connection with a dierential equation called Fibonometric dierential equation. In this study, we first introduce the balancometric dierential equation and then obtain the balancometric functions as solutions of this equation.

Biografía del autor/a

Prasanta Kumar Ray, IIIT BhubaneswarIndia

Mathematics

Assistant Professor

Citas

BEHERA, A.; PANDA, G. On the square roots of triangular numbers. The Fibonacci Quarterly, v. 37, n. 2, p. 98--105, 1999.

KOMATSU, T.; RAY, P. Higher order identities of balancing numbers. 2016. Available: <https://arxiv.org/abs/1608.05925> Accessed: 24 dec. 2016.

LIPTAI, K. Fibonacci balancing numbers. The Fibonacci Quarterly, v. 42, n. 4, p. 330--340, 2004.

LIPTAI, K. Lucas balancing numbers. Acta Math. Univ. Ostrav, v. 14, n. 1, p. 43--47, 2006.

LIPTAI, K.; PANDA, G. K.; SZALAY, L. A balancing problem on a binary recurrence and its associate. The Fibonacci Quarterly, v. 54, p. 235--241, 2016.

PANDA, G. Some fascinating properties of balancing numbers. Proc. Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, v. 194, p. 185--189, 2009.

PANDA, G.; RAY, P. Cobalancing numbers and cobalancers. International Journal of Mathematics and Mathematical Sciences, v. 2005, n. 8, p. 1189--1200, 2005.

PATEL, B.; RAY, P. The period, rank and order of the sequence of balancing numbers modulo $m$. Math. Rep. (Bucur.), v. 18, n. 3, p. 395--401, 2016.

RAY, P.; PATEL, B. Uniform distribution of the sequence of balancing numbers modulo $m$. Uniform Distribution Theory, v. 11, p. 15--21, 2016.

ROUT, S. Balancing non-Wieferich primes in arithmetic progression and abc conjecture. Proc. Japan Acad., v. 92, p. 112--116, 2016.

SMITH, R. Introduction to analytic bonometry. Alabama Journal of Mathematics, v. 1, n. 1, p. 27--36, 2014.

Publicado

21-08-2017

Cómo citar

Ray, P. K. (2017). A Trigonometry Approach to Balancing Numbers and Their Related Sequences. Sigmae, 5(2), 1–7. Recuperado a partir de https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/323

Número

Sección

Pure Mathematics