Assessment of citrus canker severity in sweet orange genotypes by mixed models
Keywords:
Linear mixed models, Citrus canker, severity, statistical environment RAbstract
The citrus canker disease affects leaves and fruits of orange trees and causes great economic losses, therefore, the use of statistical methodologies in the analysis of citrus datasets is essential. In a lot of studies about the disease behavior, several measurements may be carried out in the same experimental unit, characterizing them as repeated measures, making it necessary to use statistical methods that take this fact into account. In this sense, linear mixed effects models have become an important analysis tool. The objective, in this work, was to study and apply the theory of linear mixed models to a dataset, coming from an experiment implemented in the Northwest region of the Paraná State, whose interest was to evaluate the severity of citrus canker in sweet orange leaves for fourteen different genotypes. Using available packages in the R statistical environment, it was observed that the mixed linear model provided a good fit of the model to the data. Even, it was concluded that some of the experimental varieties are more susceptible to the development of citrus canker than others.
References
BATES, Douglas; MAECHLER, Martin; BOLKER, Ben; WALKER, Steve. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, v. 67, n. 1, p. 1-48, 2015. DOI: 10.18637/jss.v067.i01.
CAZETTA, Andressa. Genótipos De Citros Inoculados Com Xanthomonas citri subsp. citri: Um Estudo Sobre Severidade Da Doença E Anatomia Estomática Da Planta. Dissertação de Mestrado, Universidade Estadual de Maringá, Maringá, 2021.
GONÇALVES-ZULIANI, ALINE MARIA ORBOLATO. Resistência de genótipos de laranja doce (Citrus sinensis) ao cancro cítrico e diversidade genética de Xanthomonas citri subsp. citri. Dissertação de Mestrado, Universidade Estadual de Maringá, Maringá, 2014.
JELIHOVSCHI, Enio G.; FARIA, Jose C.; ALLAMAN, Ivan Bezerra. ScottKnott: A Package for Performing the Scott-Knott Clustering Algorithm in R. Trends in Applied and Computational Mathematics, v. 15, n. 1, p. 3-17, 2014. URL: https://tema.sbmac.org.br/tema/article/view/646/643.
LONGHINI, Kleber Lopes et al. Avaliação da incidência e severidade de cancro cítrico com uso de composto químico em plantas de laranja-doce. In XI Encontro Internacional de Produção Científica, Maringá, PR, 2019.
OLIVEIRA, Roberto Pedroso et al. Cancro cítrico: epidemiologia e controle. Embrapa, Pelotas-RS, 2008. Disponível em: https://shorturl.at/jltKR. Acesso em: 04/03/2023.
PINHEIRO, José C.; BATES, Douglas M.. Mixed-effects models in S and S-PLUS. Springer Science e Business Media, 2000.
PINHEIRO, J.; BATES, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-162. URL: <https://CRAN.R-project.org/package=nlme>.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Viena, Áustria. URL: http://www.R-project.org/.
VOLPATO, Sthefany Caroline. Comparações de distribuições de probabilidade na análise à resistência ao cancro cítrico. Dissertação de Mestrado em Ciências. Universidade Estadual de Maringá, Maringá, 2021.
WEST, Brady T.; WELCH, Kathleen B.; GALECKI, Andrzet T.. Random coefficient models for longitudinal data: the autism example linear mixed models: a practical guide using statistical software. 2ª ed. Nova York: CRC Press, Taylor e Francis, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).