Theoretical Increase About Interpolation Involving Finite Diferences

Authors

  • Victor Pires Domingues Universidade Estácio De Sá

Keywords:

Arithmetic Progressions, Finite Dierences, Gregory-Newton, Polynomial Interpolation.

Abstract

When we know the values of a function whose abscissa are equally spaced, we can utilize the traditional method, namely, that of Gregory-Newton, in order that we can determine  the polynomial interpolation. However, in this paper we present an alternative technique .Will be  seen, for example, under special conditions for sequences dened of recurrent form, in arithmetic  progressions of higher order, which are performed only n2- n operations.

Author Biography

Victor Pires Domingues, Universidade Estácio De Sá

Graduado em licenciatura de matemática.

References

BARBOSA, R.M. Cálculo Numérico: Interpolação Polinomial, 2.ed, São Paulo: Livraria Nobel, 1973.

BARBOSA, R.M.; BELLOMO, D.P.; FILHO, E.A. Cálculo Numérico: Cálculo De Diferenças Finitas. São Paulo: Livraria Nobel, 1973.

Downloads

Published

27-01-2023

How to Cite

Domingues, V. P. (2023). Theoretical Increase About Interpolation Involving Finite Diferences. Sigmae, 8(1), 35–39. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/886

Issue

Section

Pure Mathematics