Tessellations in the Hyperbolic Plane

Authors

  • Anna Karenina Lima Antunes Universidade Federal de Alfenas
  • Cátia Regina Oliveira Quilles Queiroz Universidade Federal de Alfenas https://orcid.org/0000-0001-5778-2734

Keywords:

Hyperbolic geometry, hyperbolic plane models, regular tessellations

Abstract

In this paper a study of hyperbolic tessellations is presented, with emphasis on regular tessellations. The tessellations have been present in our daily lives for a long time, since 5000 a.C, in bee hives and pot decorations, for example, but in the 16th century, with the studies of Johannes Kepler, German mathematician and physicist, these pavimentations left to have a purely aesthetic character and come to be seen as a mathematical study, with several applications. When studying regular tessellations in the Euclidean plane, it is noticed that there are a limited number of them, more precisely, there are only three of them in this plane. Thus there arises an expansion about the study of regular tessellations, now on the hyperbolic plane, since in this plane there are infinite possibilities, further enriching the study of tessellations. Then,
after a general study on hyperbolic geometry, two well-known Euclidean models of this geometry were considered: the upper half-plane and the Poincar ́e disc. These models provide a better visualization of the hyperbolic plane.

Author Biography

Anna Karenina Lima Antunes, Universidade Federal de Alfenas

Graduação em Licenciatura em Matemática.

References

ALBUQUERQUE, C. D. Análise e Construção de Códigos Quânticos Topológicos sobre Variedades Bidimensionais. Campinas: UNICAMP. 2009. 139p.

BRAZ, F. M. História da Geometria Hiperbólica. Universidade Federal de Minas Gerais. 2009. 34p.

LEITÃO, M. R. Tesselações no Ensino de Geometria Euclidiana. Juazeiro do Norte: Universidade Federal do Ceará. 2015. 58p.

LESKOW, L. H. A. Tesselações Hiperbólicas Aplicadas a Codificação de Geodésicas e Códigos de Fonte. Campinas: UNICAMP. 2011. 132p.

PILLA, E. C. G. Construções de Constelações de Sinais Geometricamente Uniformes Hiperbólicas. Campinas: UNICAMP. 2005. 76p.

QUEIROZ, C. R. Q. O. Códigos Geometricamente Uniformes Derivados de Grafos sobre Anéis Quocientes de Inteiros e de Ordens dos Quatérnio. Campinas: UNICAMP. 2011. 108p.

WALKDEN, C. Hyperbolic Geometry. Manchester, Manchester University, 2012.

Published

09-10-2018

How to Cite

Lima Antunes, A. K., & Oliveira Quilles Queiroz, C. R. (2018). Tessellations in the Hyperbolic Plane. Sigmae, 6(2), 69–77. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/623