Um novo sistema caótico tridimensional

um único atrator de quatro scrolls

Autores

  • Amir Hosein Refahi Sheikhani Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
  • Peyman Gholamin Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran https://orcid.org/0000-0001-8599-9981
  • Alireza Ansari https://orcid.org/0000-0003-4387-3779

Palavras-chave:

Caos, Novo sistema caótico, Expoentes Lyapunov, Mapa de Poincar, Estrutura composta

Resumo

Neste artigo, é apresentado um novo sistema caótico autônomo tridimensional com nove termos
incluindo três multiplicadores, o que é diferente do sistema de Lorenz e de outros sistemas
existentes. As propriedades dinâmicas básicas do novo sistema são analisadas através de
equilíbrio, espectro de expoente de Lyapunov, sistema dissipativo, retratos de fase, mapa
de Poincar e diagramas de bifurcação. As estruturas compostas deste novo sistema também
são analisadas. A análise teórica e a simulação numérica validam os principais resultados
deste artigo.

Referências

AMINIKHAH, H.; REFAHI SHEIKHANI, A. H.; REZAZADEH, H. Stability Analysis of Distributed Order fractional Chen System, The Scientific World Journal, v. 2013, ID:645080, p. 1-14, 2013.

AMINIKHAH, H.; REFAHI SHEIKHANI, A. H.; REZAZADEH, H. Stability analysis of linear distributed order system with multiple time delays, U.P.B. Sci. Bull. Series A, v. 77, i. 2, p. 207-218, 2015a.

AMINIKHAH, H.; REFAHI SHEIKHANI, A. H.; REZAZADEH, H. Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method, Boletim da Sociedade Paranaense de Matemática, v. 34, i. 2, p. 213-229, 2015b.

AMINIKHAH, H.; REFAHI SHEIKHANI, A. H.; REZAZADEH, H. Approximate analytical solutions of distributed order fractional Riccati differential equation, Ain Shams Engineering Journal, http://dx.doi.org/10.1016/j.asej.2016.03.007, 2016a

AMINIKHAH, H.; REFAHI SHEIKHANI, A. H.; REZAZADEH, H. Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives, Scientia Iranica, Transaction B, Mechanical Engineering, v. 23, i. 3, p. 1048-1054, 2016b.

ANSARI, A.; REFAHI SHEIKHANI, A. H. New identities for the wright and the mittag-leffler functions using the laplace transform, Asian-European Journal of Mathematics, v. 7, i. 3, ID:1450038, p. 1-8, 2014.

BUSCARINO, A.; FORTUNA, L.; FRASCA, M.; GAMBUZZA, L. V. A Chaotic Circuit Based on Hewlett-Packard Memristor, Chaos, v. 22, i. 2: 023136, p. 1-9, 2012.

CHEN, G.; DONG, X. From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, Singapore, 1998.

CHEN, G.; LAI, D. Feedback anticontrol of discrete chaos, Int. J. Bifurc. Chaos, v. 8, p. 1585-1590, 1998.

CHEN, G.; UETA, T. Yet another chaotic attractor, Internat. J. Bifur. Chaos, v. 9, i. 7, p. 1465-1466, 1999.

GUAN, Z. H.; LIU, N. Generating chaos for discrete time delayed systems via impulsive control, Chaos, v. 20, i. 1 :013135, p. 1-6, 2010.

DAFTARDAR-GEJJI, V.; BHALEKAR, S. Chaos in fractional ordered Liu system, Comput. Math. Appl., v. 59, p. 1117-1127, 2010.

KHALIL, H. K. Nonlinear Systems, Prentice-Hall, 3nd edition, 1992.

KILIÇ, R.; SARAÇOGLU, Ö. G.; YILDIRIM, F. A new nonautonomous version of Chua's circuit: Experimental observations, Journal of the Franklin Institute, v. 343, p. 191-203, 2006.

LIU, Y. J. Analysis of global dynamics in an unusual 3D chaotic system, Nonlinear Dyn., v. 70, p. 2203-2212, 2012.

LIU, N.; GUAN, Z. H. Chaotification for a class of cellular neural networks with distributed delays, Phys. Lett. A, v. 375, p. 463-467, 2011.

LIU, C.; LIU, T.; LIU, L.; LIU, K. A new chaotic attractor, Chaos, Solitons and Fractals, v. 22, i. 5, p. 1031-1038, 2004.

LORENZ, E. N. Deterministic nonperiodic flow, J. Atmos. Sci., v. 20, i. 1, p. 130-141, 1963.

LÜ, J.; CHEN, G. A new chaotic attractor coined, Internat. J. Bifur. Chaos, v. 12, i. 3, p. 659-661, 2002.

LÜ, J.; CHEN, G.; ZHANG, S. The compound structure of a new chaotic attractor, Chaos, Solitons and Fractals, v. 14, p. 669-672, 2002.

MASHOOF, M.; REFAHI SHEIKHANI, A. H. Simulating the solution of the distributed order fractional differential equations by block-pulse wavelets, U.P.B. Sci. Bull. Series A, v. 79 p. 193-206, 2017a

MASHOOF, M.; REFAHI SHEIKHANI, A. H. A Collocation Method for Solving Fractional Order Linear System, Journal of the Indonesian Mathematical Society, v. 23, i. 1, p. 27-42, 2017b.

MASHOOF, M.; REFAHI SHEIKHANI, A. H.; SABERI NAJAFI, H. Stability analysis of distributed order Hilfer-Prabhakar differential equations, Hacettepe Journal of Mathematics and Statistics, accepted, 2017.

REFAHI SHEIKHANI, A. H.; ANSARI, A.; SABERI NAJAFI, H.; MEHRDOUST, F. Analytic study on linear systems of distributed order fractional differential equations, Le Matematiche, v. 67, i. 2, p. 3-13, 2012.

REFAHI SHEIKHANI, A. H.; MASHOOF, M. Numerical solution of Fractional differential equation by Wavelets and Hybrid functions, Boletim da Sociedade Paranaense de Matemática, v. 36, i. 2, p. 231-244, 2017.

REZAZADEH, H.; AMINIKHAH, H.; REFAHI SHEIKHANI, A. H. Stability analysis of Hilfer fractional differential systems, Mathematical Communications v. 21, p. 45-64, 2016.

RÖSSLER, O. E. An equation for continuous chaos, Phys. Lett. A, v. 57, i. 5, p. 397-398, 1976.

SABERI NAJAFI, H.; EDALATPANAH, S. A.; REFAHI SHEIKHANI, A. H. Convergence Analysis of Modified Iterative Methods to Solve Linear Systems, Mediterranean Journal of Mathematics, v. 11, i. 3, p. 1019-1032, 2014.

SCHIFF, S. J.; JERGER, D. H.; DUONG, T. Controlling chaos in the brain, Nature, v. 370, p. 615-620, 1994.

SLOTINE, E. J. J.; LI, W. Applied Nonlinear Control, Prentice-Hallm, International editions, 1991.

STROGATZ, S. nonlinear dynamics and chaos, Perseus Books Publishing, L.L.C. 1994.

WANG, S.; KUANG, J.; LI, J.; LUO, Y.; LU, H.; HU, G. Chaos-Based Secure Communications in a Large Community, Phys. Rev. E, v. 66: 065202, p. 1-4, 2002.

WANG, J.; TANG, W.; ZHANG, J. Approximate Synchronization of Two Non-linear Systems via Impulsive Control, Proc. Inst. Mech. Eng. Part I, v. 226, p. 338-347, 2012.

WOLF, A.; SWIFT, J. B.; SWINNEY, H. L.; VASTANO, J. A. Determining Lyapunov exponents from a time series, Physica D, v. 16, p. 285-317, 1985.

WU, X.; LU, J. A.; CHI, K. T.; WANG, J.; LIU, J. Impulsive Control and Synchronization of the Lorenz Systems Family, Chaos, Solitons and Fractals, v. 31, p. 631-638, 2007.

ZHANG, W.; WONG, K. W.; YU, H.; ZHU, Z. L. An Image Encryption Scheme Using Reverse 2-Dimensional Chaotic Map and Dependent Diffusion, Commun. Nonlinear Sci. Numer. Simul., v. 18, p. 147-148, 2013.

Downloads

Publicado

22-08-2017

Como Citar

Refahi Sheikhani, A. H., Gholamin, P., & Ansari, A. (2017). Um novo sistema caótico tridimensional: um único atrator de quatro scrolls. Sigmae, 6(1), 1–14. Recuperado de https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/496

Edição

Seção

Matemática Pura