Transformação de dados como alternativa a análise de variância univariada
Palavras-chave:
função discriminante linear de Fisher, análise de variância multivariada, qualidade das mudas, tubetes, transformação de dadosResumo
Em experimentos é comum a obtenção de várias variáveis respostas, as quais são submetidas a análises estatísticas individuais que levam a resultados para cada característica. Com a finalidade de apresentar uma análise alternativa para quando se tem várias características, neste trabalho foi utilizada a análise discriminante de Fisher, por meio da qual se realiza uma transformação dos dados multivariados das várias características em uma nova variável univariada, sem grandes perdas de informação. Para ilustração da técnica foram utilizados dados de um experimento para aprodução de mudas de café, em tubetes, no qual foram avaliados o efeito de dois substratos comerciais (A e B), e de cinco proporções (0, 20, 40, 60 e 80%) de substituição dos substratos por um composto orgânico. Sete características de qualidade das mudas foram avaliadas e uma nova variável foi obtida a partir da transformação das variáveis originais por meio da aplicação da função discriminante linear de Fisher. A análise de variância das características da qualidade de mudas individuais detectou diferenças significativas somente entre as proporções de substituição do substrato por adubo orgânico, sendo estimadas as proporções ótimas de 19 a 29% dependendo da característica. Já a análise de variância dos dados transformados detectou diferenças significativasna interação substratos x percentual de substituição. Esses resultados mostram que a transformação dos dados multivariados em uma nova variável unidimensional por meio da função discriminante de Fisher pode ser considerada uma técnica viável para avaliação de experimentocom várias características.
Referências
BARTLETT, M. S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, Series A, London, v. 160, n. 2, p. 268-282, 1937. http://www.jstor.org/stable/96803
CHATFIELD, C.; COLLINS, A. J. Introduction to multivariate analysis. Gembloux: Presses Agroomiques, 1980. 362 p.
FERREIRA, D. F. Estatística multivariada. 2. ed. Lavras: UFLA, 2011. 675 p.
FISHER, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, London, v. 7, n. 2, p. 179-188, 1936. http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
HAIR, J. F. et al. Análise multivariada de dados. 6. ed. Porto Alegre: Bookman, 2009. 688 p.
MANLY, B. J. F. Métodos estatísticos multivariados: uma introdução. 3. ed. Porto Alegre: Bookman, 2008. 229 p.
MARANA, J.P., MIGLIORANZA, E., FONSECA, E. de P., KAINUMA, R. H., Indices de qualidade e crescimento em mudas de café, produzidas em tubetes. Ciência Rural, Santa Maria, v.38, n.1, p. 39-45, 2008. http://dx.doi.org/10.1590/S0103-84782008000100007
MENDES, A. N. G.; GUIMARAES, R. J. Plantio e formação da lavoura cafeeira. Lavras, UFLA/FAEPE, 1998. 42p.
PADOVANI, C. R. P.; ARAGON, F.F. Programa computacional para método de discriminante de Fisher. Energ. Agric. Botucatu, v. 20, n. 1, p 1-10. 2005.
PIMENTEL-GOMES, F. Curso de estatística experimental. 15. ed. Piracicaba: FEALQ, 2009. 451 p.
R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0, http://www.R-project.org/
SANTANA, S. L. S.; COGO, F. D.; GONC¸ALVES, B. O.; RIBEIRO, B. T.; CAMPOS, K. A.; MORAIS, A. R. Adição de Resíduos Orgânicos ao Substrato para Produção de Mudas de Café em Tubete. Agrogeoambiental, Inconfidentes, v.3, n.2, p.9-13, 2011. http://joomla3.ifsuldeminas.edu.br/˜ojs/index.php/Agrogeoambiental/article/view/326
SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normatily: complete samples. Biometrika, London, v. 52, n. 3/4, p. 591-611, Dec. 1965. http://www.jstor.org/stable/2333709
SILVA, A. R.; LEITE, M. T.; FERREIRA, M. C. Estimativa da area foliar e capacidade de retenc¸ao de calda fitossanitaria em cafeeiro. Bioscience Journal, Uberlandia, v. 24, n. 3, p. 66-73, 2008. http://www.seer.ufu.br/index.php/biosciencejournal/article/viewFile/6872/4552
STEEL, R. G. D.; TORRIE, J. H.; DICKEY, J. E. Principles and procedures of statistics. 3. ed. New York: McGraw-Hill, 1997. 666p.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).