Predição do desempenho de candidatos do ENEM por regressão múltipla
Palavras-chave:
Predição, desempenho, Regressão Linear Múltipla, Ciência de Dados, Mineração de Dados Educacionais, Exame Nacional do Ensino MédioResumo
No contexto da Ciência de Dados Educacionais, a Previsão de Desempenho Acadêmico de Estudantes pode seguir a Mineração de Dados Educacionais, que busca explicitar quantitativamente o desempenho estudantil, norteando professores e instituições de ensino. A Regressão Linear Múltipla é uma metodologia de previsão que pode ser aplicada à dados educacionais, como é o caso de dados do Exame Nacional do Ensino Médio (ENEM). Partindo dos dados do ENEM edição 2019, esta pesquisa formulou, testou e analisou sete modelos de regressão múltipla partindo de uma amostra de 18.908 candidatos. Tais modelos consideraram os escores das provas de (i) Linguagens, Códigos e suas Tecnologias, (ii) Matemática e suas Tecnologias, (iii) Ciências da Natureza e suas Tecnologias e (iv) Ciências Humanas e suas Tecnologias e (v) Redação; e os dados pessoais (iv) idade, (v) sexo e (vi) se concluiu o Ensino Médio em escola pública ou privada. Seis modelos apresentaram independência, variância constante, ausência de outliers influentes e significativos, permitindo uma ótima capacidade preditiva do desempenho do estudante.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).