Una Análisis de intercambio de criptomonedas mediante el uso de inteligencia artificial

Autores/as

Palabras clave:

Inteligência artificial, LSTM, Bitcoin, mercado financeiro, criptomoeda

Resumen

El mercado de intercambio de criptomonedas es donde es posible comprar y vender criptomonedas como Bitcoin y Ethereum, y donde las personas intentan ganar dinero a través de la diferencia de precio entre la compra y la venta, pero tratar de predecir el valor futuro de una moneda es difícil y requiere un fuerte análisis matemático o incluso un análisis de sentimiento de mercado para acercarse al valor real. Por lo tanto, el objetivo de este documento es utilizar el modelo de aprendizaje profundo LSTM (memoria a largo plazo a corto plazo), junto con técnicas de manipulación de datos como el análisis exploratorio de datos, para predecir el precio y la tendencia de Bitcoin, proporcionando un modelo confiable que puede usarse para ayudar a los comerciantes. tomar decisiones sobre si deben o no comprar una criptomoneda, con el objetivo de obtener ganancias. Se realizaron comparaciones con estudios previos usando técnicas y modelos como Redes Neuronales Convolucionales (CNN) y Redes Neuronales Recurrentes (RNN).

 

 

 

Citas

AKITA, Ryo. Deep learning for stock prediction using numerical and textual information. 2016 IEEE/ACIS 15th ICIS, , p. 1–6, 2016.

ALEXANDRE MACEDO, Jose; THEODORO OLIVEIRA CAMARGO, Luis; CESAR BRANDAO DE OLIVEIRA, Humberto; EDUARDO DA SILVA, Luiz; MENEZES SALGADO, Ricardo. An intelligent decision support system to investment in the stock market. IEEE Latin America Transactions, vol. 11, no. 2, p. 812–819, 2013. https://doi.org/10.1109/TLA.2013.6533971.

ANDRADE, Jenne. B3 bate recorde e movimenta R$26 bilhões por dia em 2020. eInvestidor.estadao, 2021. Disponível em: https://einvestidor.estadao.com.br/investimentos/b3-recorde-26-bilhoes-dia. Acesso em: 23-mar-2022.

BINANCE, Official documentation for the Binance APIs and streams. Disponível em: <https://github.com/binance/binance-spot-api-docs/blob/master/rest-api.md>. Acesso em: 01-Abr-2021.

BAUR, Dirk G., and Thomas Dimpfl. "Realized bitcoin volatility.", 2017. SSRN 2949754 (2017): 1-26.

ECONOMIA.IG, Conheça 5 tendências tecnológicas que impulsionam o mercado financeiro (2021). Disponível em: https://economia.ig.com.br/1bilhao/2021-10-28/conheca-5-tendencias-tecnologicas-que-impulsionam-o-mercado-financeiro.html. Acesso em: 24-mar-2022.

PAIVA, Felipe Dias; ROMA, Carolina Magda da Silva. Métodos de deep learning aplicados a candlestick como estratégia de investimento. 2014.

FAMA, Eugene F. Session Topic: Stock market price behavior session chairman: Burton G. Malkiel efficient capital markets: A review of theory and empirical work. The Journal of Finance, vol. 25, no. 2, p. 383–417, 1970.

HAJRIC, Vildana. Bitcoin Declines to Lowest Level Since December's Flash Crash. Bloomberg, 2022. Disponível em: https://www.bloomberg.com/news/articles/2022-01-05/bitcoin-declines-to-lowest-level-since-december-s-flash-crash. Acesso em: 26-mar-2022.

HOLLAND, Frank. Cryptocurrency prices fall in December, and investors blame omicron, climate change. CNBC, 2021. Disponível em: https://www.cnbc.com/2021/12/29/cryptocurrency-prices-fall-in-december-and-investors-blame-omicron-climate-change.html. Acesso em: 25-mar-2022.

HOSEINZADE, E.; HARATIZADEH, S. Cnnpred: Cnn-based stock market prediction using a diverse set of variables. Expert Systems with Applications, Elsevier, v. 129, p. 273Ű285, 2019.

JANG, Huisu; LEE, Jaewook. An empirical study on modeling and prediction of Bitcoin prices with Bayesian Neural Networks based on Blockchain information. IEEE Access, vol. 6, p. 5427–5437, 2017. https://doi.org/10.1109/ACCESS.2017.2779181.

Keras: The Python Deep Learning API. Disponível em: https://keras.io/. Acesso em 07-mar-2023.

LIANG, Qiubin, et al. "Restricted Boltzmann machine based stock market trend prediction." 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017.

MACIEL, Leandro S.; BALLINI, Rosangela. Neural networks applied to stock market forecasting: An empirical analysis. Learning and Nonlinear Models, vol. 8, no. 1, p. 3–22, 2010. https://doi.org/10.21528/lnlm-vol8-no1-art1.

MARWALA, Lufuno Ronald. Forecasting the Stock Market Index Using Artificial Intelligence Techniques. 2014. 67–70 f. 2014. https://core.ac.uk/download/pdf/39667613.pdf.

MCNALLY, Sean; ROCHE, Jason; CATON, Simon. Predicting the price of Bitcoin using machine learning. Proceedings - 26th, PDP 2018, , p. 339–343, 2018. https://doi.org/10.1109/PDP2018.2018.00060.

MALKIEL, B.G. (2005), Reflections on the Efficient Market Hypothesis: 30 Years Later. Financial Review, 40: 1-9. https://doi.org/10.1111/j.0732-8516.2005.00090.x.

MCGOWAN, Michael J. "The rise of computerized high frequency trading: use and controversy." Duke L. & Tech. Rev. 9 (2009): 1.

PONCIANO, Jonathan. ‘Looking Ugly’: Crypto Market Crash Intensifies After $300 Billion Sell-Off—How Low Can Bitcoin Prices Go?. Forbes, 2022. Disponível em: https://www.forbes.com/sites/jonathanponciano/2022/01/10/looking-ugly-crypto-market-crash-intensifies-after-300-billion-sell-off-how-low-can-bitcoin-prices-go/?sh=9acf96aa11bd. Acesso em: 26-mar-2022.

PIOTROSKI, Joseph D. "Value investing: The use of historical financial statement information to separate winners from losers." Journal of Accounting Research (2000): 1-41.

SELVIN, Sreelekshmy; VINAYAKUMAR, R.; GOPALAKRISHNAN, E. A.; MENON, Vijay Krishna; SOMAN, K. P. Stock price prediction using LSTM, RNN and CNN-sliding window model. ICACCI 2017, vol. 2017-Jan, p. 1643–1647, 2017. https://doi.org/10.1109/ICACCI.2017.8126078.

SOARES, Rebeca. CFOs brasileiros estão mais propensos a investir em tecnologia. eInvestidor.estadao, 2021. Disponível em: https://einvestidor.estadao.com.br/investimentos/cfos-investem-em-tecnologia. Acesso em: 24-mar-2022.

SHUANG, Yao; ZHANG, Weiqiang Huang Zhan. Heterogeneous Investors. no. 3, p. 2418–2421, 2011.

WANG, Jianliang; FANG, Linshan; ZHUANG, Xiang. Study and application of stock robot kaburobo based on artificial intelligence. IJCAI , p. 260–262, 2009. https://doi.org/10.1109/JCAI.2009.47.

WAQAR, M., DAWOOD, H., GUO, P., SHAHNAWAZ, M. B., & GHAZANFAR, M. A. (2017). Prediction of Stock Market by Principal Component Analysis. 2017 13th International Conference on Computational Intelligence and Security (CIS). doi:10.1109/cis.2017.00139.

Publicado

05-07-2023

Cómo citar

Moreira Penna, G., & Menezes Salgado, R. . (2023). Una Análisis de intercambio de criptomonedas mediante el uso de inteligencia artificial. Sigmae, 12(2), 29–40. Recuperado a partir de https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/1893

Número

Sección

Data Science & Machine Learning