Bayesian modeling used to describe the drying kinetics of rice grains
Keywords:
Rice, drying, Non-linear models, Bayesian Inference, RegressionAbstract
Rice is a cereal widely consumed throughout the world, it is a seasonal product, which justifies the need for conservation and storage. In the South American context, Brazil stands out as the main producer. The practice of
drying is highly beneficial, not only for minimizing post-harvest losses, but also for adding additional value to the final product. Studies generally employ few observations, but inference in nonlinear models is only valid for sufficiently large samples. As the Bayesian methodology has proven to be efficient even with small samples, the objective of this work is to analyze the adjustment of nonlinear regression models to rice grain drying kinetics data using the Bayesian inference approach. using informative and non-informative priors, as well as developing complete conditional distributions for the parameters of the evaluated models, samples of posterior marginal distributions were generated using the Gibbs sampler and Metropolis-Hastings algorithms implemented in the R software. The evaluated models were Henderson and Pabis and Simple Exponential with Three Parameters, obtaining the convergence diagnosis, mean and interval point estimates (HPD), as well as selection criteria such as the Bayesian Information Criteria (BIC) and Deviance (DIC), measure of Kullback-Leibler and Bayes factor. According to these criteria, it can be concluded that the Henderson and Pabis model was the most suitable for describing the drying kinetics of rice grains.
References
BORGES, S. R. S. et al. Proposição de um modelo para a cadeia produtiva do arroz vermelho na Paraíba. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v.14, n.4, p.353-362, 2012.
EMBRAPA- Empresa Brasileira de Pesquisa Agropecuária. Disponível em: https://www.embrapa.br/agencia-de-informacao tecnologica/cultivos/arroz/pre-producao/ socioeconomia/estatistica-de-producao. Acesso em: Acesso em: 30 jan. 2024.
ERTEKIN, C.; YALDIZ, O. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, Essex, v.63, n.1, p.349-359, 2004.
FURTADO, T. D. R. Utilização do método bayesiano na descrição da cinética de secagem da polpa de jabuticaba por modelos de regressão não linear. 123 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)–Universidade Federal de Lavras, Lavras, 2019.
GELMAN, A. et al. Bayesian Data Analysis (3rd ed.). London, UK; New York, US: Taylor & Francis Group, 2014.
GEWEKE, J. Evaluating the accurary of sampling-based approaches to the calculation of posterior moments. N: BERNARDO, J. M.; BERGER, J. O.; DAWID, A. P;SMITH, A. F. M. (Ed.). Bayesian Statistics 4. New York: Oxford University Press, 1992. p. 625-631.
GONZAGA, N. A. et al. Descrição da cinética de secagem de grãos de milho-pipoca por modelos de regressão não linear. Revista Foco, 17(1), e4176, 2024a.
GONZAGA, N. A. et al. Non-Linear Models With Autoregressive Error Structure for Studying Bean Seed Drying Kinetics. Revista de Gestão Social e Ambiental, v. 18, n. 3, p. e07886-e07886, 2024b.
HENDERSON, S. M.; PABIS, S. Grain drying theory I:temperature effect on drying coefficient. Journal of Agricultural Engineering Research, Silsoe, v.6, n.3, p.169-174,1961.
LEHN, D.N.; PINTO, L. A. A. Isotermas de equilíbrio e curvas de secagem para arroz em casca em silos de armazenagem. 2004.
Martins Filho, S. et al. Bayesian approach in the growth curves of two cultivars of common bean. Ciência Rural, 38(6), 1516-1521. DOI: 10.1590/S0103- 84782008000600004, 2008.
NESS, A. R. R. Qualidade do arroz em casca, seco e armazenado em silos metálicos com aeração controlada, 1998, 108 p. Dissertação (Mestrado em Engenharia de Alimentos) – Fundação Universidade Federal de Rio Grande – Rio Grande, RS.
RAFTERY, A. E.; LEWIS, S. Comment: One long run with diagnostics implementation strategies for markov chain monte carlo. Statistical Science, Hayward, v. 7, n. 4, p. 493-497, 1992.
PEREIRA, A. A. et al Bayesian modeling of the coffee tree growth curve. Ciência Rural, v. 52, p. e20210275, 2022.
SANTOS, D.C; DE OLIVEIRA, E.N.A. Cinética de secagem de grãos de arroz-vermelho. Revista Acadêmica Ciência Animal, v. 11, p. 35-43, 2013.
SILVA, S. V. C. et al. Modelagem bayesiana da precipitação máxima de Petrópolis (RJ) e Poços de Caldas (MG). Engenharia sanitária e ambiental, v. 28, p.e20210342, 2023.
SILVA, E. M. et al. Bayesian approach to the zinc extraction curve of soil with sewage sludge. Acta Scientiarum. Technology, v. 42, 2020.
SILVA, E. M. et al. Stanford & Smith nonlinear model in the description of CO2 evolved from soil treated with swine manure: maximum entropy prior. Acta Scientiarum-Technology, v. 45, p. e56360, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).