Regression tree for prediction the yield of fresh matter of teosinte aerial part in function of meteorological variables

Authors

  • Mikael Brum dos Reis Universidade Federal de Santa Maria
  • Alberto Cargnelutti Filho Universidade Federal de Santa Maria
  • Murilo Vieira Loro Universidade Federal de Santa Maria
  • João Augusto Andretta Universidade Federal de Santa Maria
  • Vithória Morena Ortiz Universidade Federal de Santa Maria
  • Bruno Raul Schuller Universidade Federal de Santa Maria

Keywords:

Zea mays ssp. mexicana, global solar radiation, thermal sum, regression tree

Abstract

The objective of this work was to verify if it is possible to predict the yield of fresh matter of teosinte aerial part in function of meteorological variables. An experiment was conducted with nine sowing dates (10/08/2021 to 01/01/2022). Sowings were carried out in a 5 m long row, spaced 0.80 m between rows and 0.20 m between plants in the row. In each row, five plants were randomly selected, totaling 45 plants. On 03/28/2022, in the first five sowing dates, and on 04/22/2022, in the last four sowing dates, the fresh matter of the aerial part of the plant (FMAP, in g) was determined. The cumulative global solar radiation and the thermal sum of the subperiods from sowing to male flowering (vegetative stage) and male flowering to harvest (reproductive stage) were calculated. The regression tree analysis algorithm was applied to forecast the FMAP as a function of meteorological variables. The regression tree was performed with data from all plants and sowing dates (n=45). The cumulative global solar radiation from male flowering to harvest was the main dividing point. In the second hierarchical node, the division criteria were thermal sum from sowing to male flowering and cumulative global solar radiation from sowing to male flowering. The highest productive performance (FMAP = 1162 g plant-1) was observed in plants with cumulative global solar radiation in the reproductive stage lower than 494 MJ m-2 and global accumulated solar radiation in the vegetative stage lower than 3257 MJ m-2 (33% of observations).

Author Biographies

Mikael Brum dos Reis, Universidade Federal de Santa Maria

Discente do curso de Agronomia

Alberto Cargnelutti Filho, Universidade Federal de Santa Maria

Docente do curso de Agronomia

Murilo Vieira Loro, Universidade Federal de Santa Maria

Técnico em Agropecuária pela Escola Estadual Técnica Guaramano (2014). Engenheiro Agrônomo pela Universidade Regional do Noroeste do Estado do Rio Grande do Sul (2020). Especialista em Biotecnologia pela Universidade Estadual de Maringá (2022). Mestre em Agronomia pela Universidade Federal de Santa Maria (2023). Doutorando em Agronomia e graduando em Estatística na Universidade Federal de Santa Maria. Atuação na área de melhoramento genético de plantas, machine learning, experimentação vegetal e aplicação de métodos estatísticos para análise de dados agronômicos. Conteudista na plataforma Elevagro.

João Augusto Andretta, Universidade Federal de Santa Maria

Discente do curso de Agronomia

Vithória Morena Ortiz, Universidade Federal de Santa Maria

Discente de mestrado em Agronomia

Bruno Raul Schuller, Universidade Federal de Santa Maria

Discente do curso de Agronomia

References

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013.

ARNOLD, C. Y. Maximum-minimum temperatures as a basis for computing heat units. Journal of the American Society for Horticultural Sciences, v. 76, n. 1, p. 682-692, 1960.

BRETAS, I. L. et al. Prediction of aboveground biomass and dry‐matter content in Brachiaria pastures by combining meteorological data and satellite imagery. Grass and Forage Science, v. 76, n. 3, p. 340-352, 2021.

COELHO, A. E. et al. Nitrogen use efficiency and grain yield of corn hybrids as affected by nitrogen rates and sowing dates in subtropical environment. Revista Brasileira de Ciência do Solo, v. 46, e0210087, p. 1-21, 2022.

DJAMAN, K. et al. Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental Challenges, v. 6, e100417, p. 1-11, 2022.

JEONG, J. H. et al. Random forests for global and regional crop yield predictions. Plos One, v. 11, n. 6, e0156571, 2016.

JHA, A. K. et al. Impact of irrigation method on water use efficiency and productivity of fodder crops in Nepal. Climate, v. 4, n. 1, p. 1-13, 2016.

KUMAR, B. et al. Herbage production, nutritional composition and quality of teosinte under Fe fertilization. International Journal of Agriculture & Biology, v. 18, n. 2, p. 319-329, 2016.

LOH, W. Y. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, v. 1, n. 1, p. 14-23, 2011.

MILBORROW, S. _rpart.plot: Plot ´rpart` Models: an Enhanced Version of ´plot.rpart`_. R package version 3.1.1, 2022. <https://CRAN.R-project.org/package=rpart.plot>.

MOHAN, S.; DAR, E. A.; SINGH, M. Fodder quality of teosinte fodder as influenced by nitrogen, phosphorus and zinc application. International Journal of Pure and Applied Bioscience, v. 5, p. 596-604, 2017.

R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023. Disponível em: https://www.R-project.org/.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília: Embrapa. p. 356, 2018.

THERNEAU, T.; ATKINSON, B. _rpart: Recursive Partitioning and Regression Trees_. R package version 4.1.19, 2022. Disponível em: https://CRAN.R-project.org/package=rpart.

YANG, Y. S. et al. The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution. Journal of Integrative Agriculture, v. 20, n. 2, p. 482-493, 2021.

Published

30-12-2023

How to Cite

Reis, M. B. dos, Cargnelutti Filho, A., Loro, M. V., Andretta, J. A., Ortiz, V. M., & Schuller, B. R. (2023). Regression tree for prediction the yield of fresh matter of teosinte aerial part in function of meteorological variables. Sigmae, 12(3), 24–31. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/2217

Issue

Section

Data Science & Machine Learning