Kumaraswamy Normal and Azzalini's skew Normal modeling asymmetry
Keywords:
Statistics, Probability Distributions, R softwareAbstract
This paper presents the comparison of two probability distributions with specific parameters for modelling asymmetry. Kum-normal and Azzalini's skew normal distributions were chosen because they turn, in special case, into the normal distribution. The quality of the fit, flexibility and amount of asymmetry parameters were factors used for comparison. Researches state that the Azzalini's skew normal distribution has limitations regarding the flexibility of the tail, presenting certain resistance in modelling asymmetry since, by increasing the absolute value of the asymmetry parameter, it tends to a \emph{half}-normal distribution. The objectives of this study were to implement a kum-normal distribution and, using Monte Carlo simulation to generate data with increasing levels of asymmetry, choose the best fit. The distributions were also compared in modelling a beetle data set (\emph{Tribolium cofusum}), grown at 29°C. For implementation we used the R package \texttt{gamlss}, that allows adjusting of the models, simulating data of generalized distributions and obtaining the Akaike information criterion, Bayesian information criterion and likelihood ratio test, used for comparison. The kum-normal distribution was better adjusted by increasing the level of asymmetry compared to Azzalini's skew normal distribution. For real data the two distributions do not differ significantly, showing equivalent estimation of the degree of asymmetry of these data.
References
AZZALINI, A. A class of distributions which the normal ones. Journal Statistical,v.12, n.2, p.171-178, 1985. CASELLA, G.; BERGER, R. L. Inferência Estatística. São Paulo, 2010, 588p.
CONSTANTINO, R. F.; DESHARNAIS, R. A. Gamma distributions of adult numbers for tribolium populations in the region of their steady states. Journal of Animal Ecology, v.50, p.667-681, 1981.
CORDEIRO, G. M.; CASTRO, M. A new family of generalized distributions. Journal of Statistical Computation & Simulation, v.81, n.7, p.883-898, 2011.
D’AGOSTINO, R. B. Transformation to Normality of the Null. Biometrika, v.57, n.3, p.679-681, 1978.
EUGENE, N.; LEE, C.; FAMOYE, F. Beta-normal distribution and its applications. Communications in Statistics - Theory and Methods, Michigan, USA, v.31, p.497-512, 2002.
FERREIRA, D.F. Estatística Básica. Lavras: UFLA, 2009, 664p.
HOAGLIN, D. C.; PETERS, S. C. Software for Exploring Distributional Shapes. IN: Proceedings of... Computer Science and Statistics: 12th Annual Symposium on the Interface, Ontario, Canada: Iniverty of waterloo, p. 418-443, 1979.
HOAGLIN, D. C. Summarizing shape numerically: The g-and-h Distributions, in Exploring Data, tables, Trends and Shapes. New York: Wiley, p.461-513, 1983.
JONES, M. C. Families of distributions arising from distributions of order statistics. Test, vol 13, n.1, p.1-43, 2004. JONES, M. C. Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, v.6 , p.70-81, 2008.
KUMARASWAMY, P. Generalized probability densy-function for double-bounded random-process. Journal of Hydrology, v.462, p.79-88, 1980.
OLIVEIRA, M. S. Comparações múltiplas Baysianas com erro normal assimétrico. 2009, 154f. Tese (Doutorado em Estatística e Experimentação Agropecuária), Departamento de Ciências Exatas, Universidade Federal de Lavras, Lavras, 2009.
R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0, URL http://www.R-project.org/.
SCHWARZ, G. Estimating the dimension of a model. In: STATISTICS, 6, n.2, 1978, Annals... Ann Arbor: Institute of Mathematical Statistics, 1978. pp.461-464.
STASINOPOULOS, D. M.; RIGBY, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, v.23, p.1-46, 2007.
TUKEY, J. W. Modern Techniques in Data Analysis. Proceeding of... NSF-Sponsored Regional Research Conference at Southeastern Massachusetts University, North Dartmouth, MA, 1977.
Downloads
Published
How to Cite
Issue
Section
License
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).