About eigenvalues ​​and zeros of polynomials and optimization problems

a synthesis and demonstrations

Authors

  • José Claudinei Ferreira Federal University of Alfenas, UNIFAL-MG https://orcid.org/0000-0002-4607-8431
  • Natally Rodrigues Silva Federal University of Alfenas, UNIFAL-MG

Keywords:

Eigenvalues, Singular value, Roots of polynomials, Maximum of functions

Abstract

This work is to discuss results on the existence of roots of polynomials over the real
17 or complex field, eigenvalues and singular values of operators or matrix in finite dimension, and
18 how to find it. The text is a bibliographic review to brief describe basic and important results on
19 this suject, from the analysis point of view.

Author Biography

José Claudinei Ferreira, Federal University of Alfenas, UNIFAL-MG

Degree in mathematics from the FCT-UNESP (2002-2005)

Masters in Mathematics at ICMC-USP (2006-2008)

Doctorate in Mathematics at ICMC-USP (2008-2010)

References

BRYAN, K.; LEISE, T. The R$25,000,000,000 Eigenvector: The Linear Algebra behind Google, SIAM Review, 2006, Vol. 48, No. 3, 569-581. https://doi.org/10.1137/050623280.

BUENO, H.P., Álgebra Linear: Um segundo curso, Rio de Janeiro, Sociedade Brasileira de Matemática, 2006.

JOZI, M., KARIMI, S., Weighted singular value decomposition for the discrete inverse problems, Numer. Linear Algebra Appl. 2017, https://doi.org/10.1002/nla.2114

GARBI, G. G., O romance das equações algébricas, Livraria da Física, são Paulo, 4. ed., 2010.

LIMA, E. L., Análise Real. Vol. 2. Rio de Janeiro, Instituto Nacional de Matemática Pura e Aplicada, 2004.

LIMEI ZHOU, YUE WU, LIWEI ZHANG,GUANG ZHANG. Convergence analysis of a differential equation approach for solving nonlinear

programming problems, Applied Mathematics and Computation,

Volume 184, Issue 2, 2007, 789-797, https://doi.org/10.1016/j.amc.2006.05.190.

OLIVEIRA, C. R. Introdução à Análise Funcional. 2. ed. Rio de Janeiro: IMPA, 2005.

PESCO, D. U.; BORTOLOSSI, H. J. Imagens digitais e matrizes, Revista Gazeta Matemática, n. 169, 44-48, 2013.

STEWART, I. Galois Theory, 3rd ed., Chapman & Haal/CRC, 2004.

THOMAS, G. B. Cálculo, Vol. 2, Pearson, Ed. 11, 2009.

WATKINS, D. S.. The QR Algorithm Revisited, SIAM Review 2008 50:1, 133-145, https://doi.org/10.1137/060659454.

Published

19-08-2019

How to Cite

Ferreira, J. C., & Silva, N. R. (2019). About eigenvalues ​​and zeros of polynomials and optimization problems: a synthesis and demonstrations. Sigmae, 8(1), 1–15. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/637

Issue

Section

Pure Mathematics