Bayesian Approach in Proposing a Regression Model for Wind Speed ​​in Fortaleza-CE

Authors

Keywords:

Regression Analysis, Wind Speed, Prior Distribution

Abstract

In this paper we use the Multiple Linear Regression Analysis to model the wind speed in the city of Fortaleza, with the goal of finding a statistical model able to make possible the realization of predictions for the behavior of the winds. For the study was analyzed the database provided by INMET. The linear regression model showed a good fit generated according to the residual graph, and the explanatory variables of the model showed a moderate linear correlation with the variable of interest, which can be confirmed with the determination coefficient found showing that 53 % of the variance of the Wind speed is explained by variations in temperature and humidity. In addition to the Bayesian method, also indicated that the adjustment in question is appropriate.

References

BLASCO, A.; PILES, M.; VARONA, L . Bayesian Analysis of the effect of selection for growth rate on growth curves in rabbits Genet. Sel. Evol., Valencia, v. 35, p. 21 - 41, 2003.

FRIEDMAN, J.; BARRET, S.C.H. Wind of change: new insights on the ecology and evolution of pollination and mating in wind pollinated plants. Annals of Botany, p. 1515-1527, 2009.

INMET - Instituto Nacional de Meteorologia. Monitoramento das estac¸oes convencionais. Disponível em: http://www.inmet.gov.br/sim/sonabra/convencionais.php. Acesso em: 26 de janeiro de 2012.

JONGEJANS, E.; TELENIUS, A. Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). Plant Ecology, p. 67-78, 2004.

JONSSON, P. Wind erosion on sugar beet fields in Scania, souther Sweden. Agricultural and Forest Meteorology, p. 141-157, 1992.

PIMENTA, F.; KEMPTON, W.; GARVINE, R. Combining meteorological stations and satellite data to evaluate offshore wind power resource of Southeastern Brazil. Renewable Energy, p.2375-2387, 2008.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. Dispon´ıvel em: http://www.R-project.org/.

SECITECE - Secretaria da Ciência, Tecnologia e Educação Superior do Ceará. Disponível em: http://www.sct.ce.gov.br/index.php/noticias/57469. Acesso em: 31 de março de 2011.

SIMOES, N. R. Estimadores de Bayes: aplicação ao modelo de regressão linear simples. Dissertação de Mestrado em Estatística e Experimentação Agronômica - Universidade de São Paulo, Piracicaba, SP., 138 f., 1981.

VARONA, L.; MORENO, C.; GARCIA CORTES, L. A.; ALTARRIBA, J. Multiple trait genetic analysis of underlying biological variables of production functions. Livestock Production Science, Amsterdam, v. 47, p. 201 - 209, 1997.

Published

17-10-2014

How to Cite

Morais, Érika F., Xavier Júnior, S. F. A., & Ferreira, D. V. de S. (2014). Bayesian Approach in Proposing a Regression Model for Wind Speed ​​in Fortaleza-CE. Sigmae, 2(3), 24–28. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/317