Data transformation as an alternative to univariate analysis of variance

Authors

  • Katia Alves Campos Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Campus Machado. Rodovia Machado Paraguaçú, Km 03Santo Antônio37750000 - Machado, MG - BrasilTelefone: (35) 32959700Fax: (35) 32959700
  • Crysttian Arantes Paixão
  • Augusto Ramalho de Moraes Universidade Federal de Lavras (UFLA)Departamento de Ciências Exatas (DEX)Campus UniversitárioCaixa Postal 3037CEP 37200-000 Lavras – MG

Keywords:

Fisher’s Linear Discriminant function, multivariate analysis of variance, seedling quality, tubes, data transformation

Abstract

In experiments, it is common to obtain various response variables that are subject to individual statistical analysis, leading to results for each characteristic. In order to propose an alternative analysis to deal with several characteristics at the same time, Fisher’s Discriminant Analysis was used in this work.  Through this analysis, multivariate data of various characteristics are transformed into a new univariate variable without information loss.  To illustrate the technique, we used data from na experiment of producing coffee seedlings in tubes, which evaluated the effect of two commercial substrates (A and B), and five substitution proportions (0, 20, 40, 60 and 80%) of the substrate for an organic compound. Seven quality characteristics of the seedlings were evaluated, and a new variable was obtained through the transformation of the original variables using Fisher’s Linear Discriminant function. The variance analysis of quality characteristics of individual seedlings detected significant diferences only in the replacing proportion of the substrate for organic fertilizer, and optimal proportions of 19 to 29% were estimated depending on the characteristic.  On the other hand, the variance analysis of the transformed data detected significant differences in substrate interaction x percentage replacement. These results show that using Fisher’s Discriminant Function to transform multivariate data into a new unidimensional variable can be considered a viable technique for evaluating experiments with various characteristics.

References

BARTLETT, M. S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, Series A, London, v. 160, n. 2, p. 268-282, 1937. http://www.jstor.org/stable/96803

CHATFIELD, C.; COLLINS, A. J. Introduction to multivariate analysis. Gembloux: Presses Agroomiques, 1980. 362 p.

FERREIRA, D. F. Estatística multivariada. 2. ed. Lavras: UFLA, 2011. 675 p.

FISHER, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, London, v. 7, n. 2, p. 179-188, 1936. http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x

HAIR, J. F. et al. Análise multivariada de dados. 6. ed. Porto Alegre: Bookman, 2009. 688 p.

MANLY, B. J. F. Métodos estatísticos multivariados: uma introdução. 3. ed. Porto Alegre: Bookman, 2008. 229 p.

MARANA, J.P., MIGLIORANZA, E., FONSECA, E. de P., KAINUMA, R. H., Indices de qualidade e crescimento em mudas de café, produzidas em tubetes. Ciência Rural, Santa Maria, v.38, n.1, p. 39-45, 2008. http://dx.doi.org/10.1590/S0103-84782008000100007

MENDES, A. N. G.; GUIMARAES, R. J. Plantio e formação da lavoura cafeeira. Lavras, UFLA/FAEPE, 1998. 42p.

PADOVANI, C. R. P.; ARAGON, F.F. Programa computacional para método de discriminante de Fisher. Energ. Agric. Botucatu, v. 20, n. 1, p 1-10. 2005.

PIMENTEL-GOMES, F. Curso de estatística experimental. 15. ed. Piracicaba: FEALQ, 2009. 451 p.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0, http://www.R-project.org/

SANTANA, S. L. S.; COGO, F. D.; GONC¸ALVES, B. O.; RIBEIRO, B. T.; CAMPOS, K. A.; MORAIS, A. R. Adição de Resíduos Orgânicos ao Substrato para Produção de Mudas de Café em Tubete. Agrogeoambiental, Inconfidentes, v.3, n.2, p.9-13, 2011. http://joomla3.ifsuldeminas.edu.br/˜ojs/index.php/Agrogeoambiental/article/view/326

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normatily: complete samples. Biometrika, London, v. 52, n. 3/4, p. 591-611, Dec. 1965. http://www.jstor.org/stable/2333709

SILVA, A. R.; LEITE, M. T.; FERREIRA, M. C. Estimativa da area foliar e capacidade de retenc¸ao de calda fitossanitaria em cafeeiro. Bioscience Journal, Uberlandia, v. 24, n. 3, p. 66-73, 2008. http://www.seer.ufu.br/index.php/biosciencejournal/article/viewFile/6872/4552

STEEL, R. G. D.; TORRIE, J. H.; DICKEY, J. E. Principles and procedures of statistics. 3. ed. New York: McGraw-Hill, 1997. 666p.

Published

22-10-2014

How to Cite

Campos, K. A., Paixão, C. A., & Moraes, A. R. de. (2014). Data transformation as an alternative to univariate analysis of variance. Sigmae, 2(3), 57–64. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/278