Abstract
Several phenomena have been studied to gain knowledge of their average values. However, for some phenomena, it is more relevant to study their extreme values, such as dam resistance, air humidity, wind speed, among others. Consequently, studies aimed at identifying asymptotic distributions of extreme values have been conducted to derive a distribution that does not depend on the sample's distribution. In this way, disasters in the most diverse sectors can be avoided. In this study, daily precipitation data from the city of Belo Horizonte between January 1, 1970, and December 31, 2024, were modeled. The maximum precipitation values for each year were selected, resulting in 55 observations. The dataset was obtained from the Meteorological Database for Teaching and Research (BDMEP). The Generalized Extreme Value (GEV) distribution was fitted to estimate the return levels for extreme precipitation over short, medium, and long-term periods, specifically 10, 25, 50, and 100 years. The location, scale, and shape parameters of the GEV distribution were estimated using the maximum likelihood method. However, due to the nonlinearity of the equations, the Newton-Raphson numerical method was applied. The results indicated that precipitation levels are expected to reach 132 mm in 10 years, 156 mm in 25 years, 175 mm in 50 years, and 195 mm in 100 years. In light of these findings, public policies should be implemented to prevent floods, landslides, epidemics, and economic losses in industrial, agricultural, and livestock sectors in the state capital and neighboring cities.
Keywords
References
- AGHAKOUCHAK, A.; CHIANG, F.; HUNING, L. S.; LOVE, C. A.; MALLAKPOUR, I.; MAZDIYASNI, O.; MOFTAKHARI, H.; PAPALEXIOU, S. M.; RAGNO, E.; SADEGH, M. Climate extremes and compound hazards in a warming world. A Annual Review of Earth and Planetary Sciences, v.~48, n.~1, p.~519-548, 2020.
- BEIJO, L. A.; AVELAR, F. G. Distribuição generalizada de valores extremos no estudo de dados climáticos uma breve revisão e aplicação. Revista da Estatística da Universidade Federal de Ouro Preto, v.~1, n.~1, p.~10-16, 2011.
- BEIJO, L. A.; MUNIZ, J. A.; CASTRO NETO, P. Tempo de retorno das precipitações máximas em lavras (MG) pela distribuição de valores extremos do tipo I. Ciência e Agrotecnologia, Lavras, v.~29, n.~3, p.~657-667, maio/jun. 2005.
- BEZERRA, A. P.; MEDEIROS, L. R. A.; CUNHA, A. L. X.; SILVA, M. T.; SANTANA, C. F. D. Modelagem preditiva da precipitação para análise das inundações e suas consequências no município de Natal-RN. Revista Geama, v. 9, n. 1, p. 29-41, 2023.
- CAI, Y.; HAMES, D. Minimum sample size determination for generalized extreme value distribution. Communications in Statistics - Simulation and Computation, v.~40, n.~1, p.~87–98, 2010.
- CALDEIRA, T. L.; BESKOW, S.; MELLO, C. R.; FARIA, L. C.; SOUZA, M. R.; GUEDES, H. A. S. Modelagem probabilística de eventos de precipitação extrema no estado do Rio Grande do Sul. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 19, n. 3, p. 197-203, 2015.
- COLES, S. An introduction to statistical modeling of extreme values. London: Springer-Verlag, 2001. 209~p.
- COSTA, V.; SAMPAIO, J.; FERNANDES, W.; NEIVA, G. Assessing the unexpectedness of a very large observed rainfall event in the metropolitan region of Belo Horizonte, Brazil. Natural Hazards, v.~120, n.~4, p.~3979-3994, 2024.
- DRUMOND, R. A. S.; ALMEIDA, R. P.; NASCIMENTO, N. O. Mudanças climáticas e Plano Diretor: mitigação de inundações em Belo Horizonte. Cadernos Metrópole, v.~25, n.~58, p.~ 899-922, 2023.
- Dickey, D. A., Fuller, W. A. Distribution of the estimators for autoregressive time series with unit root. Journal of the American Statistical Association, 74(366), 427-431, 1979.
- FOWLER, H. J.; WASKO, C.; PREIN, A. F. Intensification of short-duration rainfall extremes and implications for flood risk: Current state of the art and future directions. Philosophical Transactions of the Royal Society A, v.~379, n.~2195, p.~20190541, 2021.
- IBGE, Instituto Brasileiro de Geografia e Estatística. Censo 2022. Disponível em: https://cidades.ibge.gov.br/brasil/mg/belo-horizonte/panorama.
- INMET, INSTITUTO NACIONAL DE METEOROLOGIA. Banco de dados históricos. Disponível em: https://bdmep.inmet.gov.br.
- JENKINSON, A. F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal meteorological society, v.~81, n.~348, p.~158-171, 1955.
- KOLMOGOROV, A. N. Sulla determinazione empirica di una legge didistribuzione. Giorn Dell'inst Ital Degli Att, v.~4, p.~89-91, 1933.
- KUNKEL, K. E.; KARL, T. R.; SQUIRES, M. F.; YIN, X.; STEGALL, S. T.; EASTERLING, D. R. Precipitation extremes: Trends and relationships with average precipitation and precipitable water in the contiguous United States. Journal of Applied Meteorology and Climatology, v.~59, n.~1, p.~125-142, 2020.
- LEVY, L. F. Matemática: uma construção humana ante a complexidade dos fenômenos e da realidade. Alexandria: Revista de Educação em Ciência e Tecnologia, v.~15, n.~1, p.~261-275, 2022.
- LJUNG, G. M.; BOX, G., E. P. On a measure of lack of fit in time series models. Biometrika, v.~65, n.~2, p.~297-303, 1978.
- MUNDIAL, Banco. Relatório de danos materiais e prejuízos decorrentes de desastres naturais no Brasil: (1995-2019). 2020. Disponível em: https://www.gov.br/mdr/pt-br/centrais-de-conteudo/publicacoes/protecao-e-defesa-civil-sedec/danos_e_prejuizos_versao_em_revisao.pdf. Acesso em 27 de janeiro de 2025.
- NUNES, A. A.; PINTO, E. J. A.; BAPTISTA, M. B. Detection of trends for extreme events of precipitation in the Metropolitan Region of Belo Horizonte through statistical methods. RBRH, v.~23, p.~e9, 2018.
- PREFEITURA DE BELO HORIZONTE. E-book Plano Diretor de BH}: Entenda os principais pontos. 2020. Disponível em: https://prefeitura.pbh.gov.br/sites/default/files/estrutura-de-governo/politica-urbana/2020/e-book_conceitos_versao-completa.pdf.
- R CORE TEAM. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2024.
- RAZAVI, S.; GOBER, P.; MAIER, H. R.; BROUWER, R.; WHEATER, H. Anthropocene flooding: Challenges for science and society. Hydrological Processes, v.~34, n.~8, 2020.
- ROSLAN, R. A.; NA, C. S.; GABDA, D. Parameter estimations of the generalized extreme value distributions for small sample size. Mathematics and Statistics, v.~8, p.~47-51, 2020.
- WALD, A.; WOLFOWITZ, J. On a test whether two samples are from the same population. The Annals of Mathematical Statistics, v.~11, n.~2, p.~147-162, 1940.
- WASKO, C.; WESTRA, S.; NATHAN, R.; ORR, H. G.; VILLARINI, G.; HERRERA, R. V.; FOWLER, H. J. Incorporating climate change in flood estimation guidance. Philosophical Transactions of the Royal Society A, v.~379, n.~2195, p.~1-2, 2021.
- WMO, 2009. Manual on estimation of Probable Maximum Precipitation (PMP). World Meteorological Organization. Geneva, Switzerland, 291 p. Disponível em: https://damfailures.org/wp-content/uploads/2020/10/WMO-1045-en.pdf.