O uso de derivada fracionária na descrição do decaimento não exponencial

  • Nelson Henrique Teixeira Lemes Unifal-MG
  • José Paulo Carvalho dos Santos
  • João Pedro Braga UFMG
Palavras-chave: Decaimento não-exponencial, cálculo fracionário, função de Mittag-Leffer

Resumo

No processo de decaimento radioativo, a quantidade de espécies instáveis que permanecem no tempo t é dada por uma equação diferencial de primeira ordem, conhecida como lei de decaimento exponencial. Atualmente existem evidências de um decaimento não exponencial em longos tempos, quando o número de espécies presente decai suavemente, tal como $1/t^{n}$. O objetivo deste trabalho foi considerar a equação diferencial generalizada com ordem não inteira, da qual foi possível descrever os dados experimentais em  ambas regiões: exponencial e não-exponencial região. Este comportamento, obtido do cálculo fracional, está de acordo com dados experimentais recentes da literatura.

Referências

Ç ALIK, A. E.; ERTIK, H.; ODER, B.; SIRIN, H. A fractional calculus approach to investigate ¨ the alpha decay process. Int. J. Mod. Phys. E v.22, n.7, 145-157. 2013.

ASTON, P. J. Is radioactive decay really exponential? EPL v.97, p. 52001, 2012.

ASTON, P. J. Reply to the comment by Cleanthes A. Nicolaides. EPL v. 101, p. 42002, 2013.

AVIGNONE, F. T.; Comment on ’Test of the experimental decay law at short and long times’. Phys. Rev. Lett. v. 61, n. 22, p. 2264, 1988.

DOKOUMETZIDIS, A.; MACHERAS, P. Fractional kinetics in drug absortion an disposition process. J. Pahrmacokinet Pharmacodyn v. 36, p. 165-178, 2009.

GAMOW, G. Zur quantentheorie des atomkernes. Z. Phys. v. 51, n. 3(4), p. 204-212, 1928.

GODOVIKOV, S. K. Nonexponential 125mTe radiactive decay. JETP Letters v. 79, n. 5, p. 249-253, 2004.

KELKAR, N.G.; NOWAKOWSKI, M.; KHEMCHANDANI, K.P. Hidden evidence of nonexponencial nuclear decay. Phys. Rev. C, v. 70, p. 024601, 2004.

MAINARDI, F. On some properties of the Mittag-Leffer function Eα(−t α) completely monotone for t > 0 with 0 < α < 1. 2013. URL arXiv:1305.0161v1[math-ph]1May2013.

MERZBACHER, E. Quantum Mechanics. New York: John Wiley, 621p, 1961.

NICOLAIDES, C. A. Comments on ’Is radiactive decay really exponential?’ EPL v. 101, p. 42001, 2013.

NORMAN, E. B.; GAZES, S. B.; CRANE, S. G. ; BENNETT, D. A. Test of the experimental decay law at short and long times. Phys. Rev. Lett. v. 60, n. 22, p. 2246–2249, 1988.

NOVKOVIC, D.; NADDERD, L.; KANDIC, A.; VUKANAC, I.; DURASEVIC, M.; JORDANOV, D. Testing the exponential decay law of gold 198Au. Nucl. Instr. and Meth. A v. 446, p. 477-480, 2006.

PERES, A. Nonexponential decay law. Ann. Phys. v. 129, n. 1, p. 33–46, 1980.

PODLUBNY, I., Rotina do MATLAB para calcular a função de Mittag-Leffler com a acurácia desejada. Disponível em: http://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function. Acesso em: 13 fev. 2013.

POOSEH, S.; RODRIGUES, H. S.; TORRES, D. F. M. Fractional derivatives in Dengue epidemics. 2011. URL arXiv:1108.1683v1[math-CA]8Aug2011.

RIDA, S. Z.; EL-SAYED, A. M. A.; ARAFA, A . A. M. Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model. J. Stat. Phys., v. 140, p. 797–811, 2010.

RUTHERFORD, E. Uranium radiation and the electrical conduction produced by it. Phil. Mag., v. 47, n. 284, p. 109-163, 1899.

dos SANTOS, J. P. C.; CARDOSO, A.; FERREIRA, E. C.; FRANCO, J. C.; SOUZA Jr., J. C. Cálculo de Ordem Fracionária e Aplicações. Sigmae, v.1, n.1, p. 18-32, 2012.

SKOROBOGATOV, G. A.; EREMIN, V. V. On the paper “Nonexponential 125mTe radiactive decay”. JETP Letters v. 83, n. 1, p. 46–48, 2006.

SOBOL, I. M. A primer for the Monte Carlo. London: CRC Press, 107p, 1994.

Publicado
02-03-2014