Impact of the COVID-19 pandemic on IBOVESPA
a statistical analysis with machine learning models PROPHET and AUTOARIMA
Keywords:
Statistical Modeling, Time series, ForecastingAbstract
This work analyzed the impact of the covid-19 pandemic in the year 2020 on Brazilian stocks using the Bovespa index and identified outliers in the data. It also observed a trend of stability in the following years, indicating economic recovery. The seasonality in the regular patterns was identified and represented in a line graph, highlighting the lowest medians in June and July. Prophet and autoARIMA models were used for forecasting, and the results were evaluated using various error metrics, including RMSE, MAE, SMAPE, MAPE, MASE, and RSQ. Although the Prophet model performed better with the differentiated data, the AutoARIMA model performed better with the original and log1p transformed data. The study is relevant to understand the impact of the pandemic on Brazilian stocks and how forecasting models can be used to assist in decision-making.
References
Antonio Costa, Cristiano da Silva, Paulo Matos (2022). The Brazilian financial market
reaction to COVID-19: A wavelet analysis. International Review of Economics & Finance,
Volume 82, Pages 13-29. Available at: https://doi.org/10.1016/j.iref.2022.05.010.
Accessed on: 20 Feb. 2024.
B3. Índice Ibovespa. Available at: Link to acess. Accessed on:21 feb. 2023.
B3. Calendário de negociação. Available at: Link to acess. Accessed on: 21 feb. 2023.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis:
Forecasting and Control (5th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-1118675021.
FGV. COVID-19 E MERCADO FINANCEIRO. Rio de Janeiro: FGV, 2020. Available
at:Link to acess. Accessed on: 21 feb. 2023.
HYNDMAN, R. J.; KHANDAKAR, Y. Automatic Time Series Forecasting: the forecast
package for R. Journal of Statistical Software, v. 27, n. 3, p. 1-22, 2008.
IBM Cloud Education. Machine Learning. Available at:
https://www.ibm.com/br-pt/cloud/learn/machine-learning. Accessed on: 03 jan. 2023.
Liu, Z. A. Berkeley elementary function test suite. M.S. thesis, Computer Science Division,
Department of Electrical Engineering and Computer Science, University of California at
Berkeley, Berkeley, CA, USA, December 1987.
LUCIA, F. A. V. A. V. Manual de econometria. Vasconcelos, MAS; Alves, D. S ̃ao Paulo: ́
Editora Atlas, 2000.
MONTGOMERY, D. C.; JENNINGS, C. L.; KULAHCI, M. Introduction to time series
analysis and forecasting. [S.l.]: John Wiley & Sons, 2015.
MORETTIN, P. A.; TOLOI, C. An ́alise de s ́eries temporais. In: An ́alise de s ́eries temporais.
[S.l.: s.n.], 2006. p.
Nielsen, A. (2021). Análise Prática de Séries Temporais. S ̃ao Paulo: Alta Books.
Facebook. Prophet: Forecasting at Scale. Available at:
https://facebook.github.io/prophet/. Accessed on 13 feb. 2023.
Ghosh, I., Dragan, P. Can financial stress be anticipated and explained? Uncovering the
hidden pattern using EEMD-LSTM, EEMD-prophet, and XAI methodologies. Complex Intell.Syst. 9, 4169–4193 (2023). https://doi.org/10.1007/s40747-022-00947-8. Accessed on:
Feb. 2024
R CORE TEAM. R: a language and environment for statistical computing. R Foundation for
Statistical Computing: Vienna, Austria. Available at http:www.R-project.org, 2021.
Sharma, K., Bhalla, R., & Ganesan, G. (2022). Time Series Forecasting Using FB-Prophet.
Available at: https://ceur-ws.org/Vol-3445/PAPER_07.pdf. Accessed on: 20 Feb. 2024.
SHUMWAY, R.; STOFFER, D. Time series analysis using the R Statistical Package.[S.l.]: free
dog publishing, 2017.
Taylor, S. J., & Letham, B. (2017). Prophet: forecasting at scale. Facebook Research.
Available at: https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/. Accessed on: 21 feb. 2023.
Yahoo! Finanças. IBOVESPA (ˆBVSP). Available at: https://br.financas.yahoo.com/quote/%5EBVSP/history/. Accessed on: 31 Dec. 2022.
Yusof, U.K., Khalid, M.N.A., Hussain, A., Shamsudin, H. (2021). Financial Time Series Forecasting Using Prophet. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds) Innovative Systems for Intelligent Health Informatics. IRICT 2020. Lecture Notes on Data Engineering
and Communications Technologies, vol 72. Springer, Cham. Available at: https://doi.org/10.1007/978-3-030-70713-2_45. Accessed on: 20 Feb. 2024.
Downloads
Published
How to Cite
Issue
Section
License
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).