Language

Sigmae

e-ISSN: 2317-0840


Vol. 13 Issue 2 (2024) / Applied Statistics

Impact of the COVID-19 pandemic on IBOVESPA: a statistical analysis with machine learning models PROPHET and AUTOARIMA

Antonio Victor Alves Silva Erika Fialho Morais Xavier Nyedja Fialho Morais Barbosa Sílvio Fernando Alves Xavier Júnior Jader da Silva Jale

Author information

Antonio Victor Alves Silva

https://orcid.org/0009-0003-6987-0506

Author information

Erika Fialho Morais Xavier

ORCID not informed.

Author information

Nyedja Fialho Morais Barbosa

https://orcid.org/0000-0003-1813-320X

Author information

Sílvio Fernando Alves Xavier Júnior

https://orcid.org/0000-0002-4832-0711

Author information

Jader da Silva Jale

https://orcid.org/0000-0001-7414-1154

Published in July 01, 2024 https://10.29327/2520355.13.2-5

Abstract

This work analyzed the impact of the covid-19 pandemic in the year 2020 on Brazilian stocks using the Bovespa index and identified outliers in the data. It also observed a trend of stability in the following years, indicating economic recovery. The seasonality in the regular patterns was identified and represented in a line graph, highlighting the lowest medians in June and July. Prophet and autoARIMA models were used for forecasting, and the results were evaluated using various error metrics, including RMSE, MAE, SMAPE, MAPE, MASE, and RSQ. Although the Prophet model performed better with the differentiated data, the AutoARIMA model performed better with the original and log1p transformed data. The study is relevant to understand the impact of the pandemic on Brazilian stocks and how forecasting models can be used to assist in decision-making.

 

References

  • Antonio Costa, Cristiano da Silva, Paulo Matos (2022). The Brazilian financial market
  • reaction to COVID-19: A wavelet analysis. International Review of Economics & Finance,
  • Volume 82, Pages 13-29. Available at: https://doi.org/10.1016/j.iref.2022.05.010.
  • Accessed on: 20 Feb. 2024.
  • B3. Índice Ibovespa. Available at: Link to acess. Accessed on:21 feb. 2023.
  • B3. Calendário de negociação. Available at: Link to acess. Accessed on: 21 feb. 2023.
  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis:
  • Forecasting and Control (5th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-1118675021.
  • FGV. COVID-19 E MERCADO FINANCEIRO. Rio de Janeiro: FGV, 2020. Available
  • at:Link to acess. Accessed on: 21 feb. 2023.
  • HYNDMAN, R. J.; KHANDAKAR, Y. Automatic Time Series Forecasting: the forecast
  • package for R. Journal of Statistical Software, v. 27, n. 3, p. 1-22, 2008.
  • IBM Cloud Education. Machine Learning. Available at:
  • https://www.ibm.com/br-pt/cloud/learn/machine-learning. Accessed on: 03 jan. 2023.
  • Liu, Z. A. Berkeley elementary function test suite. M.S. thesis, Computer Science Division,
  • Department of Electrical Engineering and Computer Science, University of California at
  • Berkeley, Berkeley, CA, USA, December 1987.
  • LUCIA, F. A. V. A. V. Manual de econometria. Vasconcelos, MAS; Alves, D. S ̃ao Paulo: ́
  • Editora Atlas, 2000.
  • MONTGOMERY, D. C.; JENNINGS, C. L.; KULAHCI, M. Introduction to time series
  • analysis and forecasting. [S.l.]: John Wiley & Sons, 2015.
  • MORETTIN, P. A.; TOLOI, C. An ́alise de s ́eries temporais. In: An ́alise de s ́eries temporais.
  • [S.l.: s.n.], 2006. p.
  • Nielsen, A. (2021). Análise Prática de Séries Temporais. S ̃ao Paulo: Alta Books.
  • Facebook. Prophet: Forecasting at Scale. Available at:
  • https://facebook.github.io/prophet/. Accessed on 13 feb. 2023.
  • Ghosh, I., Dragan, P. Can financial stress be anticipated and explained? Uncovering the
  • hidden pattern using EEMD-LSTM, EEMD-prophet, and XAI methodologies. Complex Intell.Syst. 9, 4169–4193 (2023). https://doi.org/10.1007/s40747-022-00947-8. Accessed on:
  • Feb. 2024
  • R CORE TEAM. R: a language and environment for statistical computing. R Foundation for
  • Statistical Computing: Vienna, Austria. Available at http:www.R-project.org, 2021.
  • Sharma, K., Bhalla, R., & Ganesan, G. (2022). Time Series Forecasting Using FB-Prophet.
  • Available at: https://ceur-ws.org/Vol-3445/PAPER_07.pdf. Accessed on: 20 Feb. 2024.
  • SHUMWAY, R.; STOFFER, D. Time series analysis using the R Statistical Package.[S.l.]: free
  • dog publishing, 2017.
  • Taylor, S. J., & Letham, B. (2017). Prophet: forecasting at scale. Facebook Research.
  • Available at: https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/. Accessed on: 21 feb. 2023.
  • Yahoo! Finanças. IBOVESPA (ˆBVSP). Available at: https://br.financas.yahoo.com/quote/%5EBVSP/history/. Accessed on: 31 Dec. 2022.
  • Yusof, U.K., Khalid, M.N.A., Hussain, A., Shamsudin, H. (2021). Financial Time Series Forecasting Using Prophet. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds) Innovative Systems for Intelligent Health Informatics. IRICT 2020. Lecture Notes on Data Engineering
  • and Communications Technologies, vol 72. Springer, Cham. Available at: https://doi.org/10.1007/978-3-030-70713-2_45. Accessed on: 20 Feb. 2024.

Paper information

History

  • Received: 01/06/2023
  • Published: 01/07/2024