Impact of the COVID-19 pandemic on IBOVESPA

a statistical analysis with machine learning models PROPHET and AUTOARIMA

Authors

Keywords:

Statistical Modeling, Time series, Forecasting

Abstract

This work analyzed the impact of the covid-19 pandemic in the year 2020 on Brazilian stocks using the Bovespa index and identified outliers in the data. It also observed a trend of stability in the following years, indicating economic recovery. The seasonality in the regular patterns was identified and represented in a line graph, highlighting the lowest medians in June and July. Prophet and autoARIMA models were used for forecasting, and the results were evaluated using various error metrics, including RMSE, MAE, SMAPE, MAPE, MASE, and RSQ. Although the Prophet model performed better with the differentiated data, the AutoARIMA model performed better with the original and log1p transformed data. The study is relevant to understand the impact of the pandemic on Brazilian stocks and how forecasting models can be used to assist in decision-making.

 

References

Antonio Costa, Cristiano da Silva, Paulo Matos (2022). The Brazilian financial market

reaction to COVID-19: A wavelet analysis. International Review of Economics & Finance,

Volume 82, Pages 13-29. Available at: https://doi.org/10.1016/j.iref.2022.05.010.

Accessed on: 20 Feb. 2024.

B3. Índice Ibovespa. Available at: Link to acess. Accessed on:21 feb. 2023.

B3. Calendário de negociação. Available at: Link to acess. Accessed on: 21 feb. 2023.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis:

Forecasting and Control (5th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-1118675021.

FGV. COVID-19 E MERCADO FINANCEIRO. Rio de Janeiro: FGV, 2020. Available

at:Link to acess. Accessed on: 21 feb. 2023.

HYNDMAN, R. J.; KHANDAKAR, Y. Automatic Time Series Forecasting: the forecast

package for R. Journal of Statistical Software, v. 27, n. 3, p. 1-22, 2008.

IBM Cloud Education. Machine Learning. Available at:

https://www.ibm.com/br-pt/cloud/learn/machine-learning. Accessed on: 03 jan. 2023.

Liu, Z. A. Berkeley elementary function test suite. M.S. thesis, Computer Science Division,

Department of Electrical Engineering and Computer Science, University of California at

Berkeley, Berkeley, CA, USA, December 1987.

LUCIA, F. A. V. A. V. Manual de econometria. Vasconcelos, MAS; Alves, D. S ̃ao Paulo: ́

Editora Atlas, 2000.

MONTGOMERY, D. C.; JENNINGS, C. L.; KULAHCI, M. Introduction to time series

analysis and forecasting. [S.l.]: John Wiley & Sons, 2015.

MORETTIN, P. A.; TOLOI, C. An ́alise de s ́eries temporais. In: An ́alise de s ́eries temporais.

[S.l.: s.n.], 2006. p.

Nielsen, A. (2021). Análise Prática de Séries Temporais. S ̃ao Paulo: Alta Books.

Facebook. Prophet: Forecasting at Scale. Available at:

https://facebook.github.io/prophet/. Accessed on 13 feb. 2023.

Ghosh, I., Dragan, P. Can financial stress be anticipated and explained? Uncovering the

hidden pattern using EEMD-LSTM, EEMD-prophet, and XAI methodologies. Complex Intell.Syst. 9, 4169–4193 (2023). https://doi.org/10.1007/s40747-022-00947-8. Accessed on:

Feb. 2024

R CORE TEAM. R: a language and environment for statistical computing. R Foundation for

Statistical Computing: Vienna, Austria. Available at http:www.R-project.org, 2021.

Sharma, K., Bhalla, R., & Ganesan, G. (2022). Time Series Forecasting Using FB-Prophet.

Available at: https://ceur-ws.org/Vol-3445/PAPER_07.pdf. Accessed on: 20 Feb. 2024.

SHUMWAY, R.; STOFFER, D. Time series analysis using the R Statistical Package.[S.l.]: free

dog publishing, 2017.

Taylor, S. J., & Letham, B. (2017). Prophet: forecasting at scale. Facebook Research.

Available at: https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/. Accessed on: 21 feb. 2023.

Yahoo! Finanças. IBOVESPA (ˆBVSP). Available at: https://br.financas.yahoo.com/quote/%5EBVSP/history/. Accessed on: 31 Dec. 2022.

Yusof, U.K., Khalid, M.N.A., Hussain, A., Shamsudin, H. (2021). Financial Time Series Forecasting Using Prophet. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds) Innovative Systems for Intelligent Health Informatics. IRICT 2020. Lecture Notes on Data Engineering

and Communications Technologies, vol 72. Springer, Cham. Available at: https://doi.org/10.1007/978-3-030-70713-2_45. Accessed on: 20 Feb. 2024.

Published

01-07-2024

How to Cite

Silva, A. V. A., Xavier, E. F. M., Barbosa, N. F. M., Júnior, S. F. A. X., & Jale, J. da S. (2024). Impact of the COVID-19 pandemic on IBOVESPA: a statistical analysis with machine learning models PROPHET and AUTOARIMA. Sigmae, 13(2), 57–71. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/2158

Issue

Section

Applied Statistics