Fractional Calculus and applications

Authors

Keywords:

Fractional Calculus, Fractional Integral, Riemann-Liouville Derivative, Caputo Derivative, Laplace Transform

Abstract

The objective of this paper is to promote the theory of Fractional Calculus. The text contains the main definitions and some important results for a first study of the theory of integrals and derivatives of arbitrary order.

 

 

Author Biography

José Paulo Carvalho dos Santos, Instituto de Ciências ExatasUniversidade Federal de Alfenas

Doutor em Estatística e Experimentação Agropecuária com Pós-doutorado em Estatística Multivariada

References

AGARWAL, R. P.; DOS SANTOS, J.P.C.; CUEVAS, C. Analytic Resolvent Operator and Existence Results for Fractional Integro-differential Equations, Jour. Abstr. Differ. Equ. Appl. n.2, p. 26-47, 2012.

ANDRADE, B.; SANTOS, J.P.C. DOS Existence of solutions for a fractional neutral integro-differential equation with unbounded delay, Elect. J. Diff. Equ. n.90, p. 1-13, 2012.

CAMARGO, R. F. Cálculo Fracionário e Aplicações, 2009. 135 f. Tese (Doutorado em Matemática). Campinas: Universidade Estadual de Campinas, 2009.

CAPUTO, M. Elasticità e Diddipazione. Bologna: Zanichelli, 1969.

CAPUTO, M. Vibrations of an infinite plate with a frequency independent damping. J. Acoust. Soc. Amer., n.60, p.634-641, 1976.

CAPUTO, M. Lectures on Seismology and Rheological Tectonics, Univ. degli Studi di Roma. La Sapienza, 1992.

CHEN, W. Time-Space Fabric Underlying Anomalous Diffusion. Chaos, Solitons and Fractals, n.28, p.923-929, 2006.

CIESIELSKI, M.; LESZCZYNSKI, J. Numerical Simulation of Anomalous Diffusion. Computer Methods in Mechanics, 2003.

DIETHELM, K. Analysis of Fractional Differential Equations, New York: Springer-Verlag, 2010.

GORENFLO, R.; MAINARDI, F. Fractional Calculus: Integral and Differential Equations of Fractional Order. In: CARPINTERI, A.; MAINARDI, F. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer-Verlag, 1997, p. 223-276.

LORENZO, C. F.; HARTLEY, T. T. Intialization, Conceptualization, and Aplication in the Generalized Fractional Calculus. NASA/TP-1998-208415, 1998.

LORENZO, C. F.; HARTLEY, T. T. Initialized fractional calculus. NASA/TP-2000-209943, 2000.

MAINARDI, F. Fractional Relaxation-Oscillation and Fractional Diffusion-Wave. Phenomena. Chaos, Solitons & Fractals, n.7, p.1461-1477, 1996.

MITTAG-LEFFLER, G. M. Sur la Nouvelle Fonction E_{alpha}(x). C. R. Acad. Sci., n.137, p.554-558, 1903.

OLDHAM, K. B.; SPANIER, J. The fractional calculus. London: Academic Press, 1974.

ORSINGHER, E.; BEGHIN, L. Time-Fractional Telegraph Equation and Telegraph Pocesses with Brownian time. Probab.Theory Relat. Fields, n.128, p.141-160, 2004.

PODLUBNY, I. Fractional Differential Equations, Mathematics on Science and Engeneering, v. 198. San Diego: Academic Press, 1999.

SANTOS, J.P.C. DOS, CUEVAS, C. Asymptotically almost automorphic solutions of abstract fractional integro-differentail neutral equations, Appl. Math. Lett. n.23, p. 960-965, 2012.

SANTOS, J.P.C. DOS; CUEVAS, C.; ANDRADE, B. Existence results for a fractional equation with state-dependent delay, Adv. Diff. Equ. p. 1-15. Article ID 642013, 2011.

WYSS, W. The Fractional Black-Scholes Equation. Frac. Cal. Appl. Anal., n.3, p.51-60, 2000.

Published

31-12-2012

How to Cite

Santos, J. P. C. dos, Cardoso, A., Ferreira, E. C., Franco, J. C., & Souza Junior, J. C. (2012). Fractional Calculus and applications. Sigmae, 1(1), 18–32. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/90