Introduction to the AMMI methodology
Keywords:
Genotype × environment interaction, AMMI modelsAbstract
This work is based on the short course “A Metodologia AMMI: Com Aplicacão ao Melhoramento Genetico ”taught during the 58a RBRAS and 15o SEAGRO held in Campina Grande - PB and aim to introduce the AMMI method for those that have and no have the mathematical training. We do not intend to submit a detailed work, but the intention is to serve as a light for researchers, graduate and postgraduate students. In other words, is a work to stimulate research and the quest for knowledge in an area of statistical methods. For this propose we make a review about the genotype × environment interaction, definition of the AMMI models and some selection criteria and biplot graphic. More details about it can be found in the material produced for the Short Course.
References
ALLARD, R.W. Princípios do melhoramento genético das plantas. Rio de Janeiro: USAID/Edgard Blucher, 1971. 381p.
ALLARD, R.W. BRADSHAW, A.D. Implications of genotype-environmental interactions in applied plant breeding. Crop Science, Madison, v.4, n.5, p.503-508, 1964.
ARAUJO, M.F.C.Teste estatístico para contribuição de genótipos e ambientes na matriz de interação
GE. 2008. 113p. Dissertação (Mestrado em Estatística e Experimentação Agronômica) - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2008.
´
ARCINIEGAS-ALARCON, S.; DIAS, C. T. dos S. Imputação de dados em experimentos com interação genótipo por ambiente: Uma aplicação a dados de algodão. Revista Brasileira de Biometria, São Paulo, v.27, n.1, p.125-138, 2009.
CHAVES, J.L. Interação de cultivares com ambientes. In: NASS, L.L.; VALOIS, A.C.C.; MELO, I.S.; VALADARES, M.C. Recursos genéticos e melhoramento de plantas. Rondonopolis:´ Fundac¸ao˜ MT, 2001. p.673-713.
CHAVES, L.J.; VENCOVSKY, R.; GERALDI, I.O. Modelo não linear aplicado ao estudo da interação de genótipos ambientes em milho. Pesquisa agropecuária Brasileira, v.24, n.2, p. 259-269, 1989.
COCKERHAM, C.C. Estimation of genetics variance. In: HANSON, W.D.; ROBINSON, H.F. Ed. Statistical genetics and plant breeding. Madison: National Academy of Sciences, 1963. chap. 2, p.53-94.
CORNELIUS, P. L.; CROSSA J.; SEYEDSADR M. S. Tests and estimators of multiplicative models for variety trials. In: Proceedings of Annual Kansas State University Conference on Applied Statistics in Agriculture, 5th. Manhattan, KS. 25-27 April 1993. Dep. of Statistics, Kansas State Univ. Manhattan, KS. 1993. p.156-166.
CORNELIUS, P.L.; CROSSA J.; SEYEDSADR M.S. Statistical tests and estimators of multiplicative models for genotype-by-environment interaction. In: KANG, M.S.; GAUCH, H.G. Genotype-by.environment interaction. Boca Raton: CRC Press, 1996. chap. 8, p.199-234.
CROSSA, J.; GAUCH, H. G.; ZOBEL, R. W. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials, Crop Science 30(3), 493-500, 1990.
CROSSA, J.; FOX, P. N.; PFEIFER, W. H.; RAJARAM, S.; GAUCH, H. G. AMMI adjustment for statistical analysis of an international wheat yield trial, Theoretical Applied of Genetics 81, 27-37, 1991.
CRUZ, C.D.; REGAZZI, A.J. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, 1994. 390p.
DIAS, C.T.S. Métodos para a escolha de componentes em modelo de efeito principal aditivo e interação multiplicativa. 73 p. 2005. Tese (livre-docência no Departamento de Ciências Exatas) - Escola Superior de Agricultura ”Luiz de Queiroz”, Universidade de Sao˜ Paulo, Piracicaba, 2005.
M.F.C.; RODRIGUES, P.C.; FARIA, P.N.; ARCINIEGAS-ALARCON, S. Metodologia AMMI: Com Aplicação ao Melhoramento Genético. In: 58a Reunião da Região Brasileira da Sociedade Internacional de Biometria e 15o Simpósio de Estatística Aplicada à Experimentação Agronômica, 2013, Campina Grande-PB. Mini-Curso. 169p.
DIAS, C.T.S.; KRZANOWSKI, W.J. Model selection and cross validation in additive main effect and multiplicative interaction models. Crop Science, Madison, v.43, p.865-873, 2003.
DIAS, C.T.S.; KRZANOWSKI, W.J. Choosing components in the additive main efect and multiplicative interaction (AMMI) models. Scientia Agricola, Piracicaba, v.63, n.2, p.169-175, 2006.
DUARTE, J.B.; VENCOVSKY, R. Interação genótipo ambiente: uma introdução à analise “AMMI”. Ribeirão Preto: Sociedade Brasileira de Genética, 1999. 60p. (Série Monografıas).
EASTMENT, H. T.; KRZANOWSKI, W. J. Cross-validatory choice of the number of components from a principal component analysis. Technometrics 24, 73-77, 1982.
FALCONER, D.S. Introduction to quantitative genetics. Harlow: Longman, 1989, 438p.
FALCONER, D.S; MACKAY, T.F.C. Introduction to quantitative genetics. Harlow: Longman, 1996, 446p.
FISHER, R. A.; MACKENZIE, W. A. Studies in crop variation. II. The manurial response of different potato varieties. Journal of Agricultural Science, 13, 311-320, 1923.
FREEMAN, G.H. Statistical methods for the analysis of genotype-environment interactions. Heredity, 31, p.339-354, 1973.
GABRIEL, K.R. The biplot graphic display of matrices with applications to principal components analysis. Biometrika, Cambridge, v.58, p.453-467, 1971.
GABRIEL, K. R. Le biplot-outil d’exploration de donnees´ multidimensionelles, Journal de la Societe Francaise de Statistique 143, 5-55, 2002.
GAUCH, H.G.: Model Selection and Validation for Yield Trials with Interaction. Biometrics, v. 44, p. 705–715, 1988.
GAUCH, H.G.; ZOBEL, R.W. Predictive and postdictive success of statistical analysis of yield trials. In: KANG, M.S.; GAUCH, H.G. Genotype-by-environment interaction, Boca Raton: CRC Press, 1996. chap. 8. p. 199-234.
GOLLOB, H.F. A statistical model which combines feature of factor analitic and analysis of variance techniques. Psychometrika, New York, v.33, p.73-115, 1968.
KANG, M.S. Using genotype-by-environment interaction for crop cultivar development. Advances in Agronomy, New York, v.62, p.199-252, 1998.
KANG, M.S.; MAGARI, R. New developments in selecting for phenotypic stability in crop breeding. In: KANG, M.S.; GAUCH, H.G. Genotype-by-environment interaction, Boca Raton: CRC Press, 1996. chap. 1. p. 1-14.
KRZANOWSKI, W. J. Cross-validation in principal component analysis, Biometrics 43, 575-584, 1987.
MANDEL, J. A new analysis of variance for non-additive data. Technometrics, Alexandria, v.13, n.1, p.1-18, 1971.
MILLIKEN G.A.; JOHNSON D.E. Analysis of messy data. New York: Chapman e Hall, 1989. v.2, 199p.
OLIVEIRA, A.B.; DUARTE, J.B.; PINHEIRO, J.B. Emprego da análise AMMI na avaliação da estabilidade produtiva em soja. Pesquisa Agropecuária Brasileira, Brasília, v.38, n.3, p.357-364, 2003.
PERKINS, J. M.; JINKS, J. L. Environmental and genotype-environmental components of variability.
III. Multiple lines and crosses. Heredity, 23, p.339-356, 1968.
PIEPHO, H. P. Best linear unbiased prediction (BLUP) for regional yield trials: a comparison to additive main effects and multiplicative interaction (AMMI) analysis, Theoretical and Applied Genetics, New York, v.89, p.647-654,1994.
PIEPHO, H.P. Robustness of statistical test for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trial. Theoretical and Applied Genetics, New York, v.90, p.438-443, 1995.
RAMALHO, M.A.P.; SANTOS, J.B.; ZIMMERMANN, M.J.O. Genética quantitativa em plantas autógamas: aplicações ao melhoramento do feijoeiro. Goiânia: UFG, 1993. 271p.
VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sbg, 1992. 486p
YATES, F.; COCHRAN, W. G. The analysis of groups of experiments. Journal of Agricultural Science, 28, p.556-580, 1938.
WOLD, S. Pattern recognition by means of disjoint principal component models, Pattern Recognition, Great Britain, v.8, p.127-139, 1976.
WOLD, S. Cross-validatory estimation of the number of components in factor and principal component models, Crop Science 20, 397-405, 1978.
Downloads
Published
How to Cite
Issue
Section
License
Proposta de Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).