Bootstrap Inference for Choice-Based Conjoint Analysis

Authors

Keywords:

Paired bootstrap, Light yogurt, Free software R

Abstract

This article aims to present an application of Choice-Based Conjoint Analysis (CBCA) with additional inferences for the Choice Probabilities of each treatment and for the Choice Ratios, made through their empirical distributions obtained  via bootstrap. This study involved three attributes and eight treatments (light strawberry-flavored yogurt) in a full factorial design. By accessing the empirical distribution of the probabilities and choice ratios, it was possible to make inferences about such quantities, something that is not trivial in the frequentist context. Additionally, bias and standard error values were obtained for the Choice Probabilities and Choice Ratios, making it possible to assess the precision of these estimates, build confidence intervals, and conduct statistical comparisons on these.

References

ANSCOMBE, F. J.; GLYNN, W. J. Distribution of Kurtosis Statistic b2 for Normal Samples. Biometrika, v. 70, n. 1, p. 227-234, 1983.

ARES, G.; ARRÚA, A.; ANTÚNEZ, L.; VIDAL, L.; MACHÍN, L.; MARTÍNEZ, J.; CURUTCHET, M. R.; GIMÉNEZ, A. influence of label design on children’s perception of two snack foods: Comparison of rating and choice-based conjoint analysis. Food Quality and Preference, v. 53, n. 2, p. 1-8, 2016.

ASIOLI, D.; NAES, T.; ØVRUM, A.; ALMLI, V. L. Comparison of rating-based and choice-based conjoint analysis models. A case study based on preferences for iced coffee in Norway. Food Quality and Preference, v. 48, Part A, p. 174-184, 2016.

BAK, A.; BARTLOMOWICZ, T. Conjoint analysis method and its implementation in conjoint R package, In: POCIECHA, J; DECKER, R., (orgs.). Data analysis methods and its applications. Wydawnictwo C. H. Beck, p. 243-253, 2012.

BRANDLEY, M. A.; H. GUNN. Stated Preference Analysis of Values of Travel Time in the Netherlands. Transportation Research Record, n. 1285, 78-88, 1990.

BULLOCK, C. H.; ELSTON D. A.; CHALMERS N. A. An application of economic experiments to a land use - deer hunting and landscape change in the Scottish Highlands. Journal of Environmental Management, v. 52, n. 4, p. 335-351, 1998.

CASELLA, G.; R. L. BERGER. Statistical Inference. 2nd ed. Pacific Grove, California: Duxbury Press, 2002.

CHERNICK, M. R.; LABUDDE, R. A. An Introduction to Bootstrap Methods with Applications to R. New Jersey: John Wiley e Sons, 2014.

CHESHER, A.; SANTOS SILVA, J. M. Taste Variation in Discrete Choice Models. The Review of Economic Studies, v. 69, n. 1, p. 147-168, 2002.

D’AGOSTINO, R. B. Transformation to normality of the null distribution of g1. Biometrika, v. 57, n. 3, p. 679-681, 1970.

DAVISON, A. C.; HINKLEY, D. V. Bootstrap Methods and their Applications. Cambridge: Cambridge University Press, 1997.

DAVISON, A. C.; KUONEN, D. An introduction to the bootstrap with applications in R. Statisticial Computing and Statistical Graphics Newsletter, v. 13, n. 1, p. 6-11, 2002.

DELIZA, R.; ROSENTHAL, A.; HEDDERLEY, D.; JAEGER, S. R. Consumer perception of irradiated fruit: a case study using choice‐based conjoint analysis. Journal of Sensory Studies, v. 25, n. 2, p. 184-200, 2010.

DELLA LUCIA, S. M. Métodos estatísticos para a avaliação da influência de características não sensoriais na aceitação, intenção de compra e escolha do consumidor. Tese (Doutorado em Ciência e Tecnologia de Alimentos) – Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, 2008.

DELLA LUCIA, S. M.; MINIM, V. P. R.; SILVA, C. H. O.; MINIM, L. A.; SILVA, R. C. S. N. Análise conjunta de fatores baseada em escolhas no estudo da embalagem de iogurte light sabor morango. Brazilian Journal of Food technology, v. 13, EE01, p. 11-18, 2010.

DESARBO, W. S.; RAMASWAMY, V.; COHEN, S. H. Market segmentation with choice-based conjoint analysis. Marketing Letters, v. 6, n. 2, p. 137-147, 1995.

DORFMAN, R. A Note on the δ-method for Finding Variance Formulae. The Biometric Bulletin, v. 1, p. 129-137, 1938.

EFRON, B. Bootstrap Methods: Another Look at the Jacknife. Annals of Statistics, v. 7, n. 1, p. 1- 26, 1979.

EFRON, B. Nonparametric Standard Errors and Confidence Intervals (with discussion). The Canadian Journal of Statistics, v. 9, n. 2, p. 139-172, 1981.

EFRON, B.; TIBSHIRANI, R. J. An introduction to the bootstrap. New York: Chapman and Hall, 1993.

FOX, J.; WEISBERG, S. An R Companion to Applied Regression. 2nd ed. California: Sage Publishing, 2011.

GALLANT, A. R. Nonlinear Statistical Models. New York: John Wiley e Sons, 2009.

GAUDRY, M. J. I.; DAGENAIS, M. G. The Dogit Model. Transportation Research, Part B: Methodological, v. 13, n. 2, p. 105-111, 1979.

GREENE, W. H. Econometric analysis. 8th ed. New Jersey: Pearson Education, 2017.

HAIDER, W.; G. O. EWING. A model of tourist choices of hypothetical Caribbean destination. Leisure Sciences, v. 12, n. 1, p. 33-47, 1990.

JOHNSON, R. M.; K. A. OLBERTS. Using conjoint analysis in pricing studies: Is one price variable enough? American Marketing Association Advanced Research Technique Forum Conference Proceedings, v. 4, p. 164-73, 1991.

KAMAKURA, W. A.; SRIVASTAVA, R. K. Predicting Choice Shares under Conditions of Brand Interdependence. Journal of Marketing Research, v. 21, n. 4, p. 420-434, 1984.

KARNIOUCHINA, E. V.; MOORE, W. L.; VAN DER RHEE, B.; VERMA, R. Issues in the use of ratings-based versus choice-based conjoint analysis in operations management research. European Journal of Operational Research, v. 197, n. 1, p. 340-348, 2009.

KOELEMEIJER, K.; H. OPPEWAL. Assessing the effects of assortment and ambience: a choice experimental approach. Journal of Retailing, v. 75, n. 3, p. 319-45, 1999.

KOLMOGOROV, A. N. Foundations of the Theory of Probability. 2nd ed. New York: Dover Publications, 2018.

LOCKSHIN, L.; JARVIS, W.; D’HAUTEVILLE, F.; PERROUTY, J. P. Using simulations from discrete choice experiments to measure consumer sensitivity to brand, region, price, and awards in wine choice. Food quality and preference, v. 17, n. 3, p. 166-178, 2006.

LOUVIERE, J. J.; WOODWORTH, G. Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data, Journal of Marketing Research, v. 20, n. 4, p. 350-367, 1983.

LUCE, R. D. Individual Choice Behavior: A Theoretical Analysis. New York: John Wiley and Sons, 1959.

LUCE, R. D.; TUKEY, J. W. Simultaneous conjoint measurement: A new type of fundamental measurement. Journal of Mathematical Psychology, v. 1, n. 1, p. 1-27, 1964.

MACFIE, H. J.; BRATCHELL, N.; GREENHOFF, K.; VALLIS, L. V. Designs to balance the effect of order of presentation and first‐order carry over effects in hall tests. Journal of sensory studies, v. 4, n. 2, p. 129-148, 1989.

MCFADDEN, D. Conditional Logit Analysis of Qualitative Choice Behavior, In: ZAREMBKA, P. (org.). Frontiers in Econometrics, New York: Academic Press, 1974.

MCFADDEN, D. Modeling the Choice of Residential Location, In: A. Karlqvist, F. Snickars and J. Weibull, (orgs.). Spatial Interaction Theory and Planning Models, Canada: Elsevier North-Holland, 1978.

MEYERDING, S. Determination of part-worth-utilities of food-labels using the choice-based-conjoint-analysis using the example of tomatoes in Germany. Acta Hortic, n. 1132, p. 17-24, 2016.

MOORE, W. L.; GRAY-LEE, J.; LOUVIERE, J. J. A cross-validity comparison of conjoint analysis and choice models at different levels of aggregation. Marketing Letters, v. 9, n. 2, p. 195-207, 1998.

MOORE, W. L.; LOUVIERE J. J.; VERMA R. K. Using conjoint analysis to help design product platforms. Journal of Product Innovation Management, v. 16, n. 1, p. 27-39, 1999.

MOORE, W. L. A cross-validity comparison of rating-based and choice-based conjoint analysis models. International Journal of Research in Marketing, v. 21, n. 3, p. 299-312, 2004.

OPPEWAL, H.; TIMMERMANS, H. J. P.; LOUVIERE J. J. Modelling the Effects of Shopping Centre Size and Store Variety on Consumer Choice Behaviour. Environment and Planning A, v. 29, n. 6, p. 1073-1090, 1997.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2017.

RAO, V. R. Applied conjoint analysis. New York: Springer, 2014.

REIS, R. C. Iogurte Light Sabor Morango: Equivalência de Doçura, Caracterização Sensorial e Impacto da Embalagem na Intenção de Compra do Consumidor. Tese (Doutorado em Ciência e Tecnologia de Alimentos) – Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 2007.

RYAN, M.; FARRAR, S. Using conjoint analysis to elicit preferences for health care. British Medical Journal, v. 320, n. 7248, p. 1530-1533, 2000.

SHAPIRO, S. S.; WILK, M. B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, v. 52, n. 3/4, p. 591-611, 1965.

SZŰCS, V.; GUERRERO, L.; CLARET, A.; TARCEA, M.; SZABÓ, E.; BÁNÁTI, D. Food additives and consumer preferences: a cross-cultural choice based conjoint analysis. Acta Alimentaria, v. 43, n. 1, p. 180-187, 2014.

TEMPESTA, T.; GIANCRISTOFARO, R. A.; CORAIN, L.; CORAIN, L.; SALMASO, L.; TOMASI, D.; BOATTO, V. The importance of landscape in wine quality perception: An integrated approach using choice-based conjoint analysis and combination-based permutation tests. Food Quality and Preference, v. 21, n. 7, p. 827-836, 2010.

THERNEAU T. A Package for Survival Analysis in R. R package version 2.36 - 12, 2012. http://CRAN.R-project.org/package=survival

TRAIN, K. E. Discrete choice methods with simulation. 2nd ed. Cambridge: Cambridge University Press, 2009.

UTZ, K. S.; HOOG, J.; WENTRUP, A.; BERG, S.; LÄMMER, A.; JAINSCH, B.; WASCHBISCH, A.; SCHENK, T. Patient preferences for disease modifying drugs in multiple sclerosis therapy: a choice-based conjoint analysis. Therapeutic advances in neurological disorders, v. 7, n. 6, p. 263-275, 2014.

VAN DER WAERDEN, P.; OPPEWAL, H.; TIMMERMANS, H. J. P. Adaptive choice behavior of motorists in congested shopping centre parking lots. Transportation, v. 20, n. 4, p. 395-408, 1993.

VARIAN, H. R. Intermediate Microeconomics: A Modern Approach. 9th ed. New York: W. W. Norton e Company, 2014.

VER HOEF, J. M. Who Invented the Delta Method? The American Statistician, v. 66, n. 2, p. 124-127, 2012.

WALD, A. Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large. American Mathematical Society, v. 54, n. 3, p. 426-482, 1943.

ZIMMERMANN, T. M.; CLOUTH, J.; ELOSGE, M.; HEURICH, M.; SCHNEIDER, E.; WILHELM, S.; WOLFRATH, A. Patient preferences for outcomes of depression treatment in Germany: A choice-based conjoint analysis study. Journal of affective disorders, v. 148, n. 2, p. 210-219, 2013.

Downloads

Published

28-12-2024

How to Cite

Campana Barbosa, E., Ribeiro, A. dos S., dos Santos Nascimento, J., Gonçalves Batista, L., Henrique Osório Silva, C., Suzana Maria Della Lucia, … Pereira Belo, L. (2024). Bootstrap Inference for Choice-Based Conjoint Analysis. Sigmae, 13(5), 23–38. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/2499

Issue

Section

Applied Statistics