Time series analysis: a study of the stock exchange investment portfolio of the companies Petrobras, Banco do Brasil, Vale and Ambev.

Authors

Keywords:

GARCH Model, EGARCH Model, Financial Market, Risk Management, Conditional Volatility

Abstract

The global financial landscape, marked by significant volatility in recent years, especially during economic, geopolitical, and health events, underscores the urgency of robust risk management strategies. Market volatility, as highlighted by the COVID-19 pandemic, reinforces the importance of financial time series analysis. These theories offer a temporal view of data, enabling the identification of trends and patterns in markets. This study employs the GARCH(1,1) and EGARCH(1,1) models to analyze the return series of an investment portfolio, highlighting their significant performance in understanding conditional volatility. The GARCH(1,1) model yields robust results, indicating a gradual increase in conditional volatility, guiding cautious risk mitigation strategies. Conversely, the EGARCH(1,1) model predicts a slight decrease in volatility, allowing for assertive strategies in a less variable environment. These projections provide essential insight(s) for portfolio management, emphasizing the importance of informed decision-making and adaptive strategies in the dynamic landscape of investments.

References

ALVES, J. S. Análise comparativa e teste empírico da validade dos modelos CAPM tradicional e condicional: o caso das ações da Petrobrás. Revista Ciência Admin., vol. 13, p. 1-11. 2007.

ASSIS, C. A.; CARRANO E. G.; PEREIRA, A C. M. Predição de tendências em séries financeiras utilizando metaclassificadores. Economia Aplicada, vol. 24, p. 1-76, 2020.

BOLLERSLEV, T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, vol. 31, p. 307-327, 1986.

BOX, G. P.; JENKINS, G. M. Time series analysis, forecasting and control. San Francisco: Holden-Day, p. 362-366, 1976.

DA SILVA, C. A. G. Modelagem de estimação da volatilidade do retorno das ações brasileiras: os casos da Petrobrás e Vale. Cadernos do IME, vol. 26, p. 1-14, 2009.

DICKEY, D. A.; FULLER, W. A. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, vol. 74, p. 427-431, 1979.

ENGLE, R. F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, vol. 50, p. 987–1007, 1982.

LJUNG, G. M.; BOX, G. E. P. On a Measure of Lack of Fit in Time Series Models. Biometrika, vol. 65, p. 297-303, 1978.

MARKOWITZ, H. Portfolio Selection. Journal of Finance, vol. 7, p.77-91, 1952.

MORETTIN, P. A; TOLOI, C. M. C. Análise de Séries Temporais. São Paulo: Edgar Blucher, p. 61-84, 2020.

NELSON, D. B. Conditional heteroskedasticity in asset returns: A new approach..Econometrica, vol.59, p. 347–370, 1991.

NOGUEIRA, E. C. J.; KOBUNDA, C. N. Análise da Volatilidade do Ibovespa entre 2001 E 2016: Uma estimação através de modelos ARCH. Revista de Economia, vol. 40, p. 1-17, 2019.

PHILLIPS, P. C. B.; PERRON, P. Testing for a unit root in time series regression.Biometrika, vol. 75, p. 335-346, 1988.

QUANTMOD. Disponível em : https://cran.r-project.org/web/packages/quantmod/quantmod.pdf. Acesso em: 08 out. 2023.

R. Disponível em : https://www.r-project.org/. Acesso em: 08 out. 2023.

THOMAZ, P. S.; MATTOS, V. L. D.; Nakamura, L. R.; Konrath, A. C.; NUNES, G. S. Modelos GARCH em ações financeiras: um estudo de caso. Exacta, vol. 18, p. 1-23, 2020.

TSAY, R. S. Analysis of financial time series. John wiley & sons, p. 110-147, 2005.

ZHANG, D.; HU, M.; JI, Q. Financial markets under the global pandemic of COVID-19. Finance Research Letters, vol. 36, p. 2-6, 2020.

Published

28-12-2024

How to Cite

Toselli, B., & Biase, N. G. (2024). Time series analysis: a study of the stock exchange investment portfolio of the companies Petrobras, Banco do Brasil, Vale and Ambev. Sigmae, 13(5), 40–57. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/2464

Issue

Section

Applied Statistics