BATS, Dynamic Regression, Harmonic and TBATS models in modeling electricity demand in Southeast Brazil (2018 – 2019)

Authors

  • Tiago Chandiona Ernesto Franque Teresinha Luís Sande e Chandiona Ernesto Franque
  • Dúlcidia Carlos Ernesto Guezimane Universidade Federal de Lavras
  • Eduardo Yoshio Nakano Universidade de Brasília
  • José Augusto Fiorucci Universidade de Brasil

Keywords:

Series, Seasonality, Forecasting, Analysis

Abstract

The growing demand for electricity has stimulated studies and actions not only to increase the generation capacity of power plants, but also the rational use of this important energy resource. This has led to an increase in the number of publications related to electricity demand, generating a much larger number of scientific papers and qualitative and/or quantitative research, which makes filtering and analysis very laborious. In this sense, the analysis and modeling of electricity demand based on the database of past years
is a fundamental action at this time to predict the future consumption of this important resource. In view of the above, the aim of this article is to forecast electricity demand in the coming years based on a database published by the National Electricity System Operator of Brazil. The data used for this study refers to energy consumption in Megas Whatts (MW) from 2018 to 2019 in the Southeast/Central-West states of Brazil. 

References

CLEVELAND et al; Terpenning, I. MSTL: A seasonal-trend decomposition; Journal of official statistics, 6 (1), 3–73; 1990.

OLIVEIRA et al. Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American statistical association, v.106, n.496, p.1513-1527, Taylor & Francis, 2011.

OLIVEIRA et al. Forecasting time series with complex seasonal patterns using exponential smoothing. Jaboticabal: Taylor & Francis, v.106, n.496, p.e26210414085-e26210414085, 2021.

JULIANA et al. Eficiência energética aplicada ao consumo de eletricidade: Um estudo de revisão bibliográfica, Research, Society and Development, v.10, n.4, p.-42, 1955.

IEA (Proost, Joris). State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings; International Journal of Hydrogen Energy, Elsevier, v.44, n.9, p.4406-4413, 2019.

LEITE et al. XXV SNPTEE Seminário Nacional De Produção E Transmissão De Energia Elétrica, 10 a 13 de novembro de 2019, Belo Horizonte-MG, 2009.

SOUSA et al. Análise do potencial de aproveitamento energético de biogás de aterro e simulação de emissões de gases do efeito estufa em diferentes cenários de gestão de resíduos sólidos urbanos em Varginha (MG). Engenharia Sanitaria e Ambiental, SciELO Brasil, v.24, p.887-896, 2019.

Published

05-01-2024

How to Cite

Ernesto Franque, T. C., Guezimane, D. C. E., Yoshio Nakano, E., & Augusto Fiorucci, J. . (2024). BATS, Dynamic Regression, Harmonic and TBATS models in modeling electricity demand in Southeast Brazil (2018 – 2019). Sigmae, 12(3), 187–200. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/2238