Phyllochron estimate for the teosinte crop

Authors

  • João Carlos Junior Universidade Federal de Santa Maria
  • Alberto Cargnelutti Filho Universidade Federal de Santa Maria https://orcid.org/0000-0002-8608-9960
  • Murilo Vieira Loro Universidade Federal de Santa Maria https://orcid.org/0000-0003-0241-4226
  • João Augusto Andretta Universidade Federal de Santa Maria https://orcid.org/0000-0001-5332-1519
  • Mikael Brum dos Reis Universidade Federal de Santa Maria
  • Vithória Morena Ortiz Universidade Federal de Santa Maria
  • Bruno Raul Schuller Universidade Federal de Santa Maria

Keywords:

Zea mays ssp. mexicana, thermal sum, degrees day, modeling

Abstract

The objective of this study was to estimate the phyllochron for teosinte crops across different sowing dates. An experiment was conducted on 12 sowing dates (10/08/2021 to  01/01/2022. The sowings were carried out in a 5-meter-long row, spaced at 0.80 meters between rows and 0.20 meters between plants in the row. For each sowing date, five plants were randomly marked, and the number of expanded leaves (NF) was counted weekly until male flowering. Throughout the experimental period, daily mean air temperatures in °C were recorded. Degree days (ºC day) were calculated considering the base temperature of 10°C. The accumulated thermal sum (ºC day) from emergence was obtained by summing up the degree day values. For each sowing date, a linear regression was fitted using the equation y = a + bx, where y is the mean number of leaves of the five plants, and x is the accumulated thermal sum from emergence. The phyllochron, in °C day leaf-1, was determined by the inverse of the angular coefficient of the linear regression between NF and accumulated thermal sum (phyllochron = 1/b). The phyllochron for teosinte cultivation varied from 47.17°C day leaf-1 (sowing on 01/01/2022) to 88.99°C day leaf-1 (sowing on 12/04/2021), with an average across the 12 sowing dates of 70.14°C day for the emergence of a new leaf.

Author Biographies

Alberto Cargnelutti Filho, Universidade Federal de Santa Maria

Docente do curso de Agronomia  

Murilo Vieira Loro, Universidade Federal de Santa Maria

Discente de Doutorado em Agronomia

João Augusto Andretta, Universidade Federal de Santa Maria

Discente do curso de Agronomia

Mikael Brum dos Reis, Universidade Federal de Santa Maria

Discente do curso de Agronomia

Vithória Morena Ortiz, Universidade Federal de Santa Maria

Discente de mestrado em Agronomia

Bruno Raul Schuller, Universidade Federal de Santa Maria

Discente do curso de Agronomia

References

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013.

APHALO, P. _ggpmisc: Miscellaneous Extensions to 'ggplot2'_. R package version 0.5.2, 2022. Disponível em: https://CRAN.R-project.org/package=ggpmisc.

ARNOLD, C. Y. Maximum-minimum temperatures as a basis for computing heat units. Journal of the American Society for Horticultural Sciences, v. 76, n. 1, p. 682-692, 1960.

CHAVES, G. G. et al. Phyllochron and leaf appearance rate in oat. Bragantia, v. 76, n. 1, p. 73-81, 2017.

JHA, A. K. et al. Impact of irrigation method on water use efficiency and productivity of fodder crops in Nepal. Climate, v. 4, n. 1, p. 1-13, 2016.

LIZASO, J. I. et al. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, v. 216, n. 1, p. 129-140, 2018.

MARTINS, J. D. et al. Estimativa do filocrono em milho para híbridos com diferentes ciclos de desenvolvimento vegetativo. Ciência Rural, v. 42, p. 777-783, 2012.

ORTIZ, V. M. et al. Correlação e análise de trilha entre caracteres de teosinto. Sigmae, v. 12, n. 1, p. 29-39, 2023.

R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023. Disponível em: https://www.R-project.org/.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília: Embrapa. p. 356, 2018.

VAN ESBROECK, G. A. et al. A comparison of leaf appearance rates among teosinte, maize landraces and modern maize. Maydica, v. 53, n. 2, p. 117, 2008.

WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

YANG, Y. et al. Improving maize grain yield by matching maize growth and solar radiation. Scientific Reports, v. 9, n. 1, p. 1-11, 2019.

Published

29-12-2023

How to Cite

Junior, J. C., Cargnelutti Filho, A., Loro, M. V., Andretta, J. A., Reis, M. B. dos, Ortiz, V. M., & Schuller, B. R. (2023). Phyllochron estimate for the teosinte crop. Sigmae, 12(3), 18–23. Retrieved from https://publicacoes.unifal-mg.edu.br/revistas/index.php/sigmae/article/view/2215