SINALIZAÇÃO MEDIADA PELA INSULINA EM VIAS ANABÓLICAS

Autores

  • Bruno Cesar Correa Salles Universidade José Rosário do Vellano - UNIFENAS https://orcid.org/0000-0002-4444-9673
  • Michele Caroline Terra Universidade José do Rosário Vellano
  • Fernanda Borges de Araújo Paula Universidade Federal de Alfenas

Resumo

O anabolismo é um processo pelo qual a insulina exerce seus efeitos metabólicos na síntese de moléculas complexas através de moléculas mais simples. Os efeitos anabólicos são alcançados através de sua ligação a subunidade alfa de seu receptor tirosina quinase de membrana. A ativação do receptor de membrana promoverá a ativação das vias IR/IRS/PI3K/Akt e IRS/MAPK que podem ser consideradas como as principais vias anabólicas de ação da insulina. A via IR/IRS/PI3K/Akt levará a captação de glicose, aumento na síntese de glicogênio, de proteínas e lipídeos. Por outro lado, a via IRS/MAPK promoverá a proliferação e diferenciação celular. Tecidos como o hepático, o muscular e o adiposo, podem ser considerados os mais importantes por apresentarem as maiores concentrações do receptor de insulina.

Biografia do Autor

Bruno Cesar Correa Salles, Universidade José Rosário do Vellano - UNIFENAS

Curso de Biomedicina e Farmácia.

Universidade José do Rosário Vellano - UNIFENAS.

Referências

ADAMO, M. et al. NUTRITIONAL STATES ON INSULIN RECEPTORSl. Annual Reviews of Biochemistry, v. 8, p. 149 – 166, 1988.

BASIS, M. MOLECULAR BASIS OF INSULIN ACTION. Annual Reviews of Biochemistry, v. 46, p. 359 – 84, 1977.

BENGOECHEA-ALONSO, M. T.; ERICSSON, J. A phosphorylation cascade controls the degradation of active SREBP1. The Journal of biological chemistry, v. 284, n. 9, p. 5885–95, 2009.

BEUREL, E.; GRIECO, S. F.; JOPE, R. S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacology & Therapeutics, v. 148, p. 114–131, 2015.

CALDEIRA, M. V. et al. Role of the ubiquitin–proteasome system in brain ischemia: Friend or foe? Progress in Neurobiology, v. 112, p. 50–69, 2014.

CAMPOREZ, J. P. G.; ALMEIDA, F. N.; MARÇAL, A. C. Efeitos do exercício físico sobre a via de sinalização da insulina. Revista Mackenzie de Educação Física e Esporte, v. 12, n. 2, p. 172–186, 2013.

CARVALHEIRA, J. B. C.; ZECCHIN, H. G.; SAAD, M. J. A. Vias de Sinalização da Insulina. Arquivo brasileiro de endocrinologia metabólica., v. 46, n. 4, p. 419–425, 2002.

CARVALHO-FILHO, M. A. DE et al. Cross-talk das vias de sinalização de insulina e angiotensina II: implicações com a associação entre diabetes mellitus e hipertensão arterial e doença cardiovascular. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 51, n. 2, p. 195–203, 2007.

CHENG, Z.; TSENG, Y.; WHITE, M. F. Insulin signaling meets mitochondria in metabolism. Trends in Endocrinology & Metabolism, v. 21, n. 10, p. 589–598, 2010.

CHONG, H.; VIKIS, H. G.; GUAN, K.-L. Mechanisms of regulating the Raf kinase family. Cellular Signalling, v. 15, n. 5, p. 463–469, 2003.

CL, M. Entendendo a Regulação da Glicose no Corpo. [s.l: s.n.].

COBO, J. A.; BONETT, A. M. Fator FOXO e sinalização nutricional na reprodução de. [s.l.] Universidade Federal de Uberlândia, 2008.

DZAU, V. J.; BRAUN-DULLAEUS, R. C.; SEDDING, D. G. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nature Medicine, v. 8, n. 11, p. 1249–1256, 2002.

EBERLÉ, D. et al. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, v. 86, n. 11, p. 839–848, 2004.

GOALSTONE, M. L.; DRAZNIN, B. Conferences and Reviews Insulin Signaling Insulin Signaling. Conferences and Reviews, v. 167, n. 3, p. 166–173, 1997.

GUAL, P.; LE MARCHAND-BRUSTEL, Y.; TANTI, J.-F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, v. 87, n. 1, p. 99–109, 2005.

GUAN, K. L. et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. Journal of Biological Chemistry, v. 275, n. 35, p. 27354–27359, 2000.

HABER, E. P. et al. Secreção da Insulina: Efeito Autócrino da Insulina e Modulação por Ácidos Graxos. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 45, n. 3, p. 219–227, 2001.

HAGEN, R. M.; RODRIGUEZ-CUENCA, S.; VIDAL-PUIG, A. An allostatic control of membrane lipid composition by SREBP1. FEBS Letters, v. 584, n. 12, p. 2689–2698, 2010.

JEON, T.-I.; OSBORNE, T. F. SREBPs: metabolic integrators in physiology and metabolism. Trends in Endocrinology & Metabolism, v. 23, n. 2, p. 65–72, 2012.

KIM, J.-G. et al. Luminescence and crystal field parameters of the Na3[Eu(DPA)3]·12H2O complex in a single crystalline state. Journal of Alloys and Compounds, v. 274, n. 1-2, p. 1–9, 1998.

KONG, K. et al. How insulin engages its primary binding site on the insulin receptor. National institutes of Health, v. 493, n. 7431, p. 241–245, 2014.

KRYCER, J. R. et al. The Akt–SREBP nexus: cell signaling meets lipid metabolism. Trends in Endocrinology & Metabolism, v. 21, n. 5, p. 268–276, 2010.

LAWRENCE JR., J. C. et al. PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. Adv Enzyme Regul, v. 37, p. 239–267, 1997.

LEAL, A. D. C. et al. Mutações no gene do receptor do fator de crescimento insulina-símile 1 (IGF1R) como causa de retardo do crescimento pré- e pós-natal. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 55, n. 8, p. 541–549, 2011.

LEARY, A. et al. The PI3K / Akt / mTOR Pathway in Ovarian Cancer : Biological Rationale and Therapeutic Opportunities. In: Ovarian Cancer - A Clinical and Translational Update. [s.l: s.n.]. p. 275 – 301.

LEAVENS, K. F. et al. Akt2 Is Required for Hepatic Lipid Accumulation in Models of Insulin Resistance. Cell Metabolism, v. 10, n. 5, p. 405–418, 2009.

LEITE, C. A. V. G.; CALLADO, R. B.; RIBEIRO, R. A. Receptores tirosina-quinase : implicações terapêuticas no câncer. revista Brasileira de Oncologia Clínica, v. 8, n. 29, p. 130–142, 2012.

LEMMON, M. A.; SCHLESSINGER, J. Review Cell Signaling by Receptor Tyrosine Kinases. Cell, v. 141, p. 1117–1134, 2010.

LIMA-SILVA, A. E. et al. Metabolismo do glicogênio muscular durante o exercício físico: Mecanismos de regulação. Revista de Nutricao, v. 20, n. 4, p. 417–429, 2007.

LOWENSTEIN, E. J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell, v. 70, n. 3, p. 431–442, 1992.

MA, X. M.; BLENIS, J. Molecular mechanisms of mTOR-mediated translational control. Nature Reviews Molecular Cell Biology, v. 10, n. 5, p. 307–318, 2009.

MACHADO, U. F.; SCHAAN, B. D.; SERAPHIM, P. M. Transportadores de Glicose na S’índrome Metab—lica. Arq Bras Endocrinol Metab, v. 50, n. 2, p. 177–189, 2006.

MALHEIROS, S. V. Regulação do metabolismo celular - um resumo. Revista Brasileira de Ensino de Bioquímica e Biologia Molecular, n. 01, p. 1–7, 2006.

MANUSCRIPT, A.; SIGNALING, I. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms. Journal of Endocrinology, v. 220, n. 2, p. 1–36, 2014.

MARINHO, R. et al. Effects of different intensities of physical exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice. Einstein (Sao Paulo, Brazil), v. 12, n. 1, p. 82–89, 2014.

MATUOKA, K. et al. Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries. Proceedings of the National Academy of Sciences of the United States of America, v. 89, n. 19, p. 9015–9019, 1992.

MÎINEA, C. P. et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. The Biochemical journal, v. 391, n. Pt 1, p. 87–93, 2005.

MIRON, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature cell biology, v. 3, n. 6, p. 596–601, 2001.

MISEREZ, A. R. et al. Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis, v. 164, n. 1, p. 15–26, 2002.

NADEEM, R. I.; AHMED, H. I.; EL-DENSHARY, E.-E.-D. S. Effect of Imipramine, Paroxetine, and Lithium Carbonate on Neurobehavioral Changes of Streptozotocin in Rats: Impact on Glycogen Synthase Kinase-3 and Blood Glucose Level. Neurochemical Research, v. 40, n. 9, p. 1810–1818, 2015.

NAVE, B. T. et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem Journal, v. 344 Pt 2, p. 427–431, 1999.

RAMACHANDRAN, V.; SARAVANAN, R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Human & Experimental Toxicology, v. 34, n. 9, p. 884–893, 2015.

RAMALINGAM, L.; OH, E.; THURMOND, D. C. Novel roles for insulin receptor(IR) in Adipocytes and Skeletal Muscle Cells Via New and Unexpected Substrates. Cellular and Molecular Life Sciences, v. 70, n. 16, p. 2815–2834, 2014.

RAUGHT, B.; GINGRAS, A. C.; SONENBERG, N. The target of rapamycin (TOR) proteins. Proceedings of the National Academy of Sciences of the United States of America, v. 98, n. 13, p. 7037–7044, 2001.

RAYASAM, G. V. et al. Glycogen synthase kinase 3: more than a namesake. British Journal of Pharmacology, v. 156, n. 6, p. 885–898, 2009.

ROACH, P. J. et al. Glycogen and its metabolism: some new developments and old themes. Biochemical Journal, v. 441, n. 3, p. 763–787, 2012.

ROSKOSKI, R. RAF protein-serine/threonine kinases: Structure and regulation. Biochemical and Biophysical Research Communications, v. 399, n. 3, p. 313–317, 2010.

ROUX, P. P. et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. The Journal of biological chemistry, v. 282, n. 19, p. 14056–64, 2007.

RUVINSKY, I. et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes and Development, v. 19, n. 18, p. 2199–2211, 2005.

SAMBASIVARAO, S. V; HUNG, M.-C. Deciphering the Role of Forkhead Transcription Factors in Cancer Therapy. Current Drug Target, v. 18, n. 9, p. 1199–1216, 2013.

SAMBASIVARAO, S. V; SIGMUND, C. D. Id3, E47 and SREBP-1c: Fat Factors Controlling Adiponectin Expression. Circulation Reasearch, v. 18, n. 9, p. 1199–1216, 2013.

SARBASSOV, D. D. et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (New York, N.Y.), v. 307, n. 5712, p. 1098–1101, 2005.

SCHEEPERS, A.; JOOST, H.-G.; SCHÜRMANN, A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of parenteral and enteral nutrition, v. 28, n. 5, p. 364–371, 2004.

SHIMOMURA, I. et al. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. The Journal of clinical investigation, v. 99, n. 5, p. 838–45, 1997.

SHIMOMURA, I. et al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proceedings of the National Academy of Sciences of the United States of America, v. 96, n. 24, p. 13656–13661, 1999.

SMITH, T. M. et al. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. The Journal of investigative dermatology, v. 128, n. 5, p. 1286–93, 2008.

STEPHENS, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5- trisphosphate-dependent activation of protein kinase B. Science, v. 279, n. 5351, p. 710–714, 1998.

STOKOE, D. et al. Dual Role of Phosphatidylinositol-3 , 4 , 5- trisphosphate in the Activation of Protein Kinase B. Science, v. 277, p. 567–570, 1997.

THOMPSON, K. N. et al. The combinatorial activation of the PI3K and Ras / MAPK pathways is sufficient for aggressive tumor formation , while individual pathway activation supports cell persistence. Oncotarget, p. 1 – 15, 2015.

WANG, Y.; ZHOU, Y.; GRAVES, D. T. FOXO transcription factors: Their clinical significance and regulation. BioMed Research International, v. 2014, p. 1 – 13, 2014.

WEI, Y. et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. Journal of Biological Chemistry, v. 281, n. 46, p. 35137–35146, 2006.

WIMMER, R.; BACCARINI, M. Partner exchange: protein–protein interactions in the Raf pathway. Trends in Biochemical Sciences, v. 35, n. 12, p. 660–668, 2010.

ZAVODNIK, I. B. et al. Diabetes mellitus: Metabolic effects and oxidative stress. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, v. 5, n. 2, p. 101–110, 2011.

ZHANG, X. et al. Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta - Molecular Cell Research, v. 1813, n. 11, p. 1978–1986, 2011.

ZHAO, J. et al. Mammalian target of rapamycin (mTOR) regulates TLR3 induced cytokines in human oral keratinocytes. Molecular immunology, v. 48, n. 1-3, p. 294–304, 2010.

Downloads

Publicado

31-12-2019

Como Citar

Salles, B. C. C., Terra, M. C., & Paula, F. B. de A. (2019). SINALIZAÇÃO MEDIADA PELA INSULINA EM VIAS ANABÓLICAS. Revista Farmácia Generalista Generalist Pharmacy Journal, 1(2), 25–45. Recuperado de https://publicacoes.unifal-mg.edu.br/revistas/index.php/revistafarmaciageneralista/article/view/1087

Edição

Seção

Artigos de Revisão