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Resumo: Para verificar a igualdade de mais de dois ńıveis de um fator de interesse em expe-
rimentos conduzidos em delineamento inteiramente casualizado costuma-se utilizar o teste F da
análise de variância, que é considerado o teste mais poderoso para tal finalidade. No entanto,
a validade de seus resultados depende da verificação das seguintes pressuposições: aditividade
dos efeitos admitidos no modelo, independência, homocedasticidade e normalidade dos erros. O
teste não-paramétrico de Kruskal-Wallis possui pressuposições mais moderadas e, portanto, é
uma alternativa quando as pressuposições exigidas pelo teste F não se verificam. Entretanto,
quanto mais fortes as pressuposições de um teste, melhor será seu desempenho e, se forem satis-
feitas as hipóteses fundamentais da análise de variância, o teste F será a melhor opção. Neste
trabalho; violou-se normalidade dos erros, ao simular variáveis-resposta binomiais, objetivando-
se comparar os desempenhos dos testes F e Kruskal-Wallis quando uma das pressuposições da
análise de variância não é satisfeita. Por meio da simulação Monte Carlo, foram simulados
3.150.000 experimentos para avaliar a taxa de erro tipo I e poder dos testes. Na maioria das
situações, o poder do teste F foi superior ao do teste de Kruskal-Wallis e, ainda assim, o teste
F controlou a taxas de erro tipo I.
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Abstract: To verify the equality of more than two levels of a factor under interest in experiments
conducted under a completely randomized design (CRD) it is common to use the F ANOVA test,
which is considered the most powerful test for this purpose. However, the reliability of such re-
sults depends on the following assumptions: additivity of effects, independence, homoscedasticity
and normality of the errors. The nonparametric Kruskal-Wallis test requires more moderate
assumptions and therefore it is an alternative when the assumptions required by the F test are
not met. However, the stronger the assumptions of a test, the better its performance. When
the fundamental assumptions are met the F test is the best option. In this work, the normality
of the errors is violated. Binomial response variables are simulated in order to compare the
performances of the F and Kruskal-Wallis tests when one of the analysis of variance assump-
tions is not satisfied. Through Monte Carlo simulation, were simulated 3, 150, 000 experiments
to evaluate the type I error rate and power rate of the tests. In most situations, the power of
the F test was superior to the Kruskal-Wallis and yet, the F test controlled the Type I error rates.
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Introduction

In experiment designs the comparison of means - in general - is made by comparing the
effects of treatments, through multiple comparison tests. Before that, however, is usually done
a test to detect the existence of differences between treatments, in which the null hypothesis of
equality of means is tested against the alternative hypothesis that there is at least one average
different from the others.

The analysis of variance (ANOVA) was the first method for the analysis of experimental
data, developed by Ronald Fisher from the 1920s. In this method the comparison of means
is performed using the F test, which is considered the most powerful parametric test for this
purpose (SIEGEL; CASTELLAN, 2006).

A parametric test commonly brings strong assumptions such as those about the distribution
of the data. Thus, the use of the ANOVA’s F test depends on the verification of four assumptions
to be valid. Such assumptions, called fundamental assumptions of analysis of variance, are:
additive effects model, independence, homoscedasticity and normality of errors. Theoretically,
if at least one of these assumptions is not met, the analysis of variance has no validity as a
statistical analysis technique and becomes a simple mathematical treatment of data collected
(LIMA; ABREU, 2000).

An alternative to circumvent the violation of assumptions required by the variance analysis
is the use of nonparametric statistics for data analysis. The nonparametric corresponding of
the ANOVA’s F test, in experiments conducted in a completely randomized design (CRD),
is the Kruskal-Wallis test, which is based on the observations rank and whose assumptions
are: (i) independence among observations; (ii) observations from the same population within a
treatment and that the treatments have roughly the same distribution and; (iii) the variables
are continuous (KRUSKAL; WALLIS, 1952).

It is remarkable that the assumptions of the Kruskal-Wallis are milder than those of the F
test, but it is important to note that the less extensive are the assumptions for performing a
test, the more general will be its conclusions and the lower its efficiency. Thus, if the underlying
assumptions of the analysis of variance are met, the F test will present better performance than
the nonparametric Kruskal-Wallis (CAMPOS, 1983).

Vieira (2006) argues that non-normality of errors affects the efficiency in the estimation
of treatment effects and results in loss of power and, furthermore, there is increased error in
the level of significance of the test. However, that author asserts that small violations of this
assumption does not affect substantially the result of analysis of variance.

This statement is reinforced by Feir and Toothaker (1974) who compared, via Monte Carlo
simulation, the power and type I error rates of F and Kruskal-Wallis tests, especially in situations
where the assumptions of the parametric procedure were not satisfied. For this comparison, the
authors simulated various situations resulting from combinations of total sample sizes (N = 28
or N = 68), balanced and unbalanced experiments, equal and not equal variances, normal and
exponential (non-normal) data. According to those authors, the Kruskal-Wallis test proved to
be competitive considering the type I error rates, but the same did not happen with the power.
Therefore, the authors concluded that the F test performed best in most cases, even when the
normality and/or homocedascity were not met.

Reis and Ribeiro (2007) compared the performance of the F, Kruskal-Wallis and Friedman
tests to data under normality or not, in experiments conducted in completely randomized designs
(CRD) and a randomized block designs (RBD), respectively. For this comparison, authors
simulated 1000 samples with a fixed number of treatments (I = 5) and 5, 10 and 25 replicates
per sample, under normal, lognormal and binomial distribution, and estimated the type I error
rate and power of tests. According to the authors, the F test for both the CRD and DBC
presented empirical power greater than the nonparametric tests and still controlled the type I
error rates in all simulated situations. Thus, the authors concluded that there is no need to
replace the F test for their nonparametric competitors, even when the assumption of normality
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is not satisfied.
Thus, this study aimed to compare, via Monte Carlo simulation, the performance of ANOVA’s

F and Kruskal-Wallis tests and recommend which one should be used when the response variable
is binomial, therefore, do not satisfy the assumption of normality.

Methodology

We used a Monte Carlo simulation to assess the type I error rates and power of ANOVA’s F
and Kruskal-Wallis tests.

To simulate the experimental data as well as for the estimation of type I error and power,
an algorithm was developed in R language (R CORE TEAM, 2012).

The experimental data were simulated from a binomial distribution with parameters n and
p∗i , where n ∈ N and p∗i ∈ [0, 1], ie Yij ∼ Bin(n, p∗i ) with i = 1, 2, . . . , I and j = 12, . . . , J , where
I is the number of treatments, J is the number of replications and n is given by:

n =
1

CV 2
(1)

where CV is the coefficient of variation.
The equation above was obtained from the coefficient of variation (CV ), settling the average

probability of success of the experiment in p̄ = 0.5 as follows:

CV =
σ

µ
=

√
np̄(1− p̄)
np̄

=

√
n(0.5)(0.5)

n(0.5)
=

√
n

n
⇒ n =

1

CV 2

Note that n ∈ N and n > 1 since n is the number of trials of the simulated binomial
distribution. Thus, for the value of n, it was chosen the nearest natural number, where the
value calculated in equation (11) were not natural numbers.

For the data simulation under complete H0, the parameter p∗i = 0.5 and was fixed and, under
complete H1, p

∗
i was obtained, so that the treatments were centred at 0.5, from the equation:

p∗i =


pi +

[
0.5− p( I+1

2 )

]
, if I is odd

pi +

[
0.5−

p( I2) + p( I2+1)

2

]
, if I is even.

(2)

where pi is given by:

pi =
i

I +K
(3)

where K is a penalty factor, whose function is to generate values of pi close to each other.
Equation (33) was obtained to keep the treatment equally spaced in the range [0, 1], ie the

interval between each adjacent treatment was a fixed length pi.
The factor K acts as pseudo-treatments that are added to I, thus increasing the number

of treatments that should be equally spaced between 0 and 1. Thus, the real I treatments
are confined to a subinterval contained in [0, 1]. Therefore, the higher K ∈ N, the lower the
subinterval, ie closer are the average of treatments.

For example, taking K = 1, CV = 20% and total of treatments I = 3, the values generated
for p∗i are: p∗1 = 0.25, p∗2 = 0.5 and p∗3 = 0.75. Thus, treatments T1, T2 and T3 follows the binomial
distributions Bin(25, .25),Bin(25, .50) and Bin(25, 0.75), respectively, and are illustrated on
Figure 11.

Keeping the same CV and number of treatments, and setting K = 10, the values generated
for p∗i are: p∗1 = 0.42, p∗2 = 0.5 and p∗3 = 0.58. Thus, treatments T1, T2 and T3 follow the
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Figure 1: Values generated for p∗i and their respective distributions, setting CV = 20% and
K = 1.

● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

pi* = 0,42

v

x

● ● ● ● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ● ● ● ●

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

pi* = 0,50

v

x

● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ● ●

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

pi* = 0,58

v

x

Figure 2: Values generated for p∗i and their respective distributions, setting CV = 20% and
K = 10.

binomial distributions Bin(25, .42), Bin(25, .50) and Bin(25, 0.58), respectively, illustrated on
Figure 22.

It is noteworthy that, for the simulation under complete H0, the value of p∗i was fixed and
thus the penalty factor was only used in the simulation under H1. The values adopted for the
penalty factor were K = 1, 10, 50, 100.

We considered groups of experiments (I and II) and, for each scenario, we simulated 3000
experiments. The nominal level of significance was set to 5%.

In experiment I, we evaluated the experimentwise type I error rates of the F and Kruskal-
Wallis tests and, for this, were simulated 630, 000 experiments (210 sets × 3, 000 experiments
per scenario) without treatment effect (complete H0). The 210 scenarios were the result of
combinations between the number of treatments (I = 3, 5, 10, 15, 20, 25, 30), the number of
replications (J = 3, 4, 5, 10, 15, 20) and coefficients of variation (CV = 1%, 5%, 10%, 15%, 20%).
The empirical type I error rate was computed by the ratio of the total number of wrong inferences
(under H0), and the total number of experiments (3000).
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To verify the presence of differences between the type I error rate and the nominal level of
significance (5%) we used the 99% exact confidence interval for proportions, given by:

IC1−α :

PI =
1

1 +
(n− y + 1)Fα/2;ν1=2(n−y+1),ν2=2y

y

;PS =
1

1 +
(n− y)

(y + 1)Fα/2;ν1=2(y+1),ν2=2(n−y)

 (4)

where Fα/2 is the superior quantile of F distribution with ν1 and ν2 degrees of freedom. If
y = 0 then PI = 0 and PS is obtained in (44), or if y = n then PS = 1 and PI is obtained in (44)
(FERREIRA, 2005).

In group II, we computed the power of the tests. Overall, 2, 520, 000 experiments were simula-
ted (840 scenarios × 3000 experiments per scenario) with different treatment effects, so that the
means of the treatments were equally spaced and τ1 < τ2 < . . . < τI . The 840 scenarios were ob-
tained from the combinations of number of treatments (I = 3, 5, 10, 15, 20, 25, 30), the number of
replications (J = 3, 4, 5, 10, 15, 20), the coefficients of variation (CV = 1%, 5%, 10%, 15%, 20%)
and the values of the penalty factor (K = 1, 10, 50, 100).

The power of the tests was estimated by 1 − β̂, where β̂ is given by the ratio between the
total number of wrong inferences (under H1) and the total number of experiments (3000)11.

Results and discussion

Type I error rate

On Figure 33 and Figure 44 we show the type I error rates of the F and Kruskal-Wallis tests,
under the null, considering the nominal level of significance set at 5%.
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Figure 3: Type I error rate based on the number of treatments, number of replications (J) and
CV = 1%, for F (a) and Kruskal-Wallis (b) tests.

To check for differences between the nominal level of significance (α = 5%) and type I error
rate, 99% exact confidence intervals for proportions were calculated. The confidence interval is

1Note that, although the simulation has been made under complete H1, for computing the power, decisions
were found to be correct when the test has been detected at least one pair of different means. Thus, power
was calculated by an empirical number of times the test correctly rejected H0 divided by the total number of
experiments (3000).
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[0.04031, 0.06115]. Thus, all figures show three lines: a dotted, referring to the significance level,
and two dashed, referring to the extremes of the confidence interval.

As in Figures 33 and 44, in all cases studied, both tests have control of the type I error rate.
However, in most cases where the number of replicates was less than or equal to 5, the type I
error rates encountered for Kruskal-Wallis test were below the nominal level of significance, ie,
the Kruskal-Wallis test was more conservative.

It was observed that for both tests, the number of treatments did not affect this rate as well
as the coefficient of variation. About the coefficient of variation, similar result was obtained by
Reis and Ribeiro (2007), who simulated binomial data with a fixed number of treatments (I = 5)
and reported no changes in the type I error rates when increased the coefficient of variation.

Considering (CV = 5%, 10%, 15%), the results were quite similar to (CV = 1%) shown
above and (CV = 20%) shown in the figure below, therefore these results were not presented
here.
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Figure 4: Type I error rate based on the number of treatments, number of replications (J) and
CV = 20%, for F (a) and Kruskal-Wallis (b) tests.

Evaluating the type I error rate according to the number of replications, it was found that
increasing the number of repetitions caused an increase of the error rate of the Kruskal-Wallis test
for all the coefficients of variation, leading it to stay closest to the nominal level of significance
(α = 5%). The number of replicates had no effect on type I error rates of the ANOVA’s F test.
This result is corroborated by Reis and Ribeiro (2007), who had type I error rates closer to the
nominal level of significance when the number of simulated repetitions was high.

Power rates

In this section we show the percentages of correct decisions for the ANOVA’s F test and
Kruskal-Wallis test, depending on the number of treatments, for the nominal significance value
α = 5%, under complete H1 and considering the various penalty factors (K) and coefficients of
variation (CV ).

The power of ANOVA’s F test was less than the power of the nonparametric test in all
situations, even with the breakdown of the assumption of normality of errors. Feir and Toothaker
(1974), which simulated data from an exponential distribution, and Reis and Ribeiro (2007) that
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simulated data lognormal and binomial distribution, obtained similar results when simulating
non-normal data.

Evaluating the power in function of the CV , it was found that its increase cause a decrease in
power for both F Kruskal-Wallis tests. A similar result was obtained by Reis and Ribeiro (2007),
who stated that this decrease in power due to the fact that the increase in CV causes a departure
from the normal distribution by reducing the sample size (n) of the binomial distribution.

Also, it was possible to observe that in all scenes, the empirical power increased with the
number of treatments and repetitions. Reis and Ribeiro (2007) also observed the growth of
power when increased the number of replications.

Below are the detailed results for each penalty factor, as well as graphical representations of
some of these results.

Penalty factor K = 1

Both tests had a maximum power when they were considered the coefficients of variation
1%, 5% and 10%, despite the number of treatments and replications.

Considering the other coefficients of variation, the power of the F test was found to be equal
to or higher than the nonparametric test because the F test maintained maximum power in
most situations, except in the case where CV = 20%, I = 3 and J = 3 (whose power was
99.63%), while Kruskal-Wallis showed larger falls, considering the same number of treatments
and replicates (98.76% and 92.40% for CV = 15% and CV = 20%, respectively).

Penalty factor K = 10

Both the ANOVA’s F test and Kruskal-Wallis test reached maximum power in most situa-
tions where CV = 1% and CV = 5%. However the parametric test showed maximum power in
all situations, while its nonparametric competitor presented a fall when CV = 5%, I = 3 and
J = 3, obtaining power of 96%.

Considering CV = 10%, 3 treatments and 3 replicates, the power of F and Kruskal-Wallis
tests were (72.63%) and (42.23%), respectively. Taking into account the same number of tre-
atments, both tests had a power greater than 80% for 4 or more repetitions. Both tests have
reached the maximum power, regardless of the number of repetitions, when the number of
treatment was less than 10.

When considering CV = 15%, shown on Figure 55, one can observe that, for the minimum
number of treatments (I = 3), the power of the F test ranged from 39.96% to 100%, while
the Kruskal-Wallis’s power ranged between 18.20% and 100%. Note also that the empirical
power curves of the F test are closer together than the Kruskal-Wallis test. Both tests showed
maximum power when the number of treatments are equal to or greater than 10.

It is shown on Figure 66 the power of F and Kruskal-Wallis tests, where CV = 20%. The
growth rate of the power curves of the F test are closer together than the Kruskal-Wallis test.
Taking into account three treatments and three replicates, F test achieved power between 24.96%
and 99.20% while the Kruskal-Wallis ranged over 10.5% to 98.9%. Both tests had a maximum
power when the number of treatments was less than 15, although they come close to that power,
when considered 10 treatments (99.90% and 99.40%, respectively).

Penalty factor K = 50

Regarding CV = 1%, F test showed maximum power no matter how many treatments and
replications, while the Kruskal-Wallis test showed a drop in power for the minimum number of
treatments and replicates (98.80%).

On Figure 77 are shown the power of F and Kruskal Wallis tests in situations where CV =
5%. Note that the empirical power curves of the F test are closer together than the Kruskal-
Wallis test. Considering the minimum number of treatments (I = 3), the power of F test
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Figure 5: Power rates based on the number of treatments and replications, considering K = 10
and CV = 15%, for F (a) and Kruskal-Wallis (b) tests.
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Figure 6: Power rates based on the number of treatments and replications, considering K = 10
and CV = 20%, for F (a) and Kruskal-Wallis (b) tests.

ranged from 23.03% and 99% and, in the same situation, the power of the Kruskal-Wallis ranged
between 8.97% and 98.73%. Besides, both tests reached the maximum power when the number
of treatment was less than 10.

Regarding the situation where CV = 10%, shown on Figure 88, it is observed that the growth
rates of empirical power curves are more similar to each other for the F test than for Kruskal-
Wallis test. When the number of treatments and replicates is 3, the power of the F test was 9.5%,
while the power of the Kruskal-Wallis test was 3.3%, and considering that number of treatments,
the power shown by the tests - to the maximum number of repetitions (J = 20) - was 54.03% and
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Figure 7: Power rates based on the number of treatments and replications, considering K = 50
and CV = 5%, for F (a) and Kruskal-Wallis (b) tests.

51.73%, respectively. The power of the F test was above 80% for all treatments and replications,
when the number of treatments was equal to more than 10 and, in this situation, the Kruskal-
Wallis test was below this value (71.93%) when the number of repetitions was minimal (J = 3).
Both tests showed the maximum power from 15 treatments on.
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Figure 8: Power rates based on the number of treatments and replications, considering K = 50
and CV = 10%, for F (a) and Kruskal-Wallis (b) tests.

Considering CV = 15%, shown on Figure 99, it is observed that the power varied between
6.7% and 25.36% and between 2.23% and 24.53% for the F and Kruskal-Wallis tests, respectively,
for I = 3. Also, the curves of F test’s empirical power are closer to each other, when compared
to the Kruskal-Wallis test. When the number of treatments was less than 15, both tests had
a power above 80%, and, with three replicates, F test showed the power 93.23% while the
Kruskal-Wallis power presented 81.9%. Both tests presented maximum power when the number
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of treatments was equal to or greater than 25, although for 20 treatments the minimum power
presented by both tests was close to 100%, (99.57% for the Kruskal-Wallis and 99.97% for the
F test).
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Figure 9: Power rates based on the number of treatments and replications, considering K = 50
and CV = 15%, for F (a) and Kruskal-Wallis (b) tests.

On Figure 1010, we show the power of F test and Kruskal-Wallis tests setting CV = 20%. It
may be noted that the empirical power curves are closer together for the F test than for the
Kruskal-Wallis test. Considering three treatments, the power of the F test ranged from 5.87% to
16.93% and the Kruskal-Wallis test ranged from 2.23% to 15.7%. Both had power over 80% for
the number of treatments equal to or greater than 20 and showed maximum power only when
the number of treatments was equal to 30, although they got close to 100% when the number
of treatments was equal to 25 (99.97% and 99.20%, respectively).
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Figure 10: Power rates based on the number of treatments and replications, considering K = 50
and CV = 5%, for F (a) and Kruskal-Wallis (b) tests.
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Penalty factor K = 100

On Figure from 1111 to 1515 we present the power of F test and Kruskal-Wallis tests for K = 100.
Considering this penalty factor, the F test had power greater than or equal to the Kruskal-Wallis
test for all coefficients of variation.

Regarding CV = 1%, shown on Figure 1111, both tests presented the maximum power when
the number of treatments is equal to or greater than 5. When considering three treatments, the
power of the Kruskal-Wallis test was lower than 60% for a small number of repetitions (J = 3)
and, in this situation, the F test showed power above 90%, growing as the number of repetitions
increased.
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Figure 11: Power rates based on the number of treatments and replications, considering K = 100
and CV = 1%, for F (a) and Kruskal-Wallis (b) tests.

In situations where CV = 5%, shown on Figure 1212, the two tests had low power when three
treatments were considered, both staying below 60%, independent of the number of replications.
In this case, the power of the Kruskal-Wallis test is close to zero for a small number of repetitions
(J = 3), while the power of F test is close to 10%. As the number of treatments increase, increases
the power of both tests, reaching the maximum power when the number of treatments is equal
to or greater than 15.

On Figure 1313 we show the power of F and Kruskal-Wallis tests, considering CV = 10%.
Regarding three treatments, both tests presented power under 20% (17.87% and 16.53%, res-
pectively), regardless of the number of repetitions. It should be noted also that the growth rates
of the curves of the F test are more alike than the Kruskal-Wallis test. In the same situation,
both the F test and the Kruskal-Wallis test had power greater than 80%, for all numbers of
replications, when the number of treatments was equal to of greater than 20, although the F
test has shown a power near that value (79.37%) when the number of treatments was equal to
15. Both tests showed maximum power with, at least, 25 treatments.

It is shown on Figure 1414, the power of F and Kruskal-Wallis tests in situations where CV =
15% and in these situations, the empirical power curves remained closer to each other for both
F and Kruskal-Wallis tests. Regarding three treatments, the power of the Kruskal-Wallis test
ranged from 2% to 9.9%, in the same situation the F test ranged from 5.27% to 10.27%. Both
tests exceeded 80% when the number of treatment was equal to or greater than 25. Tests have
not reached the maximum power for all numbers of replicates in any number of treatments,
although the power of both has been close to the maximum power in situations where the

Sigmae, Alfenas, v.1, n.1, p. 126-139. 2012.



Ferreira, Rocha and Mequelino (2012) 137

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Número de tratamentos

P
od

er

●

●

●

● ● ● ●

J=3
●

●

● ● ● ● ●

J=4
J=5

J=10

J=15

J=20

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Número de tratamentos

P
od

er

●

●

●

● ● ● ●

J=3

●

●

●
● ● ● ●

J=4
J=5

J=10

J=15

J=20

(a) (b)

Figure 12: Power rates based on the number of treatments and replications, considering K = 100
and CV = 5%, for F (a) and Kruskal-Wallis (b) tests.
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Figure 13: Power rates based on the number of treatments and replications, considering K = 100
and CV = 10%, for F (a) and Kruskal-Wallis (b) tests.

number of treatments was equal to 30 (more than 98.57% and 99.57% for Kruskal-Wallis and F,
respectively).

On Figure 1515 are displayed the power of F and Kruskal-Wallis tests when CV = 20%.
Note that the empirical power curves of the F test are closer together when compared with the
Kruskal-Wallis test. Regarding three treatments, the power of the Kruskal-Wallis test ranged
between 1.9% and 7.73%, according to the number of replications, while the power of the F
test in the same situation, varied between 5.37% and 8.03%. The power of F test reached 80%,
despite the number of repetitions, in situations where the number of treatments was maximum
(I = 30) and in the same situation, the Kruskal-Wallis test did not reach that power for the
minimum number of repetitions (J = 3), when he presented a power of 77.90%.
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Figure 14: Power rates based on the number of treatments and replications, considering K = 100
and CV = 15%, for F (a) and Kruskal-Wallis (b) tests.
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Figure 15: Power rates based on the number of treatments and replications, considering K = 100
and CV = 20%, for F (a) and Kruskal-Wallis (b) tests.

Conclusions

The main conclusion of this study was that the assumption of normality of residuals imposed
by F test analysis of variance is not strong.

For data with binomial errors in an analysis of variance model of fixed effects in completely
randomized design, the F test behaved in general, equally or better than its immediate nonpa-
rametric competitor, the Kruskal-Wallis test, controlling the nominal level of significance and
presenting high rates of power.

Even when the samples sizes are small (few treatments and/or repetitions) the Kruskal-Wallis
test was not better than F test.

This finding suggests that non-normal residuals in small samples should not be a factor that
prevents the use of analysis of variance.
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