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Abstract: When we know the values of a function whose abscissa are equally spaced, we can
utilize the traditional method, namely, that of Gregory-Newton, in order that we can determine
the polynomial interpolation. However, in this paper we present an alternative technique . Will be
seen, for example, under special conditions for sequences defined of recurrent form, in arithmetic
progressions of higher order, which are performed only n®> — n operations.
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Resumo: Quando se conhece os valores de uma funcdo cujas abscissas sejam igualmente
espagadas, podemos utilizar o método tradicional, a saber, o de Gregory-Newton, a fim de que
determinemos a interpolacao polinomial. Entretanto neste artigo apresentaremos uma técnica
alternativa. Serd visto, por exemplo, em condigoes especiais de sequéncias definidas na forma
recorrente, em progressdes aritméticas de ordem superior, que sdo executadas apenas n® — n

operacoes.

Palavras-chave : Progressoes Aritméticas , Diferengas Finitas, Gregory-Newton, Interpolacao
Polinomial.

Introduction

The theory of polynomial interpolation is the foundation of several algorithms, among which
the quadrature, the calculation of the roots of equations, the differentiation and the integration
of differential equations. Nevertheless, it has its own large area, and tangentiating it there are
other sections, such as the study of sequences called arithmetic progressions of higher order,
which are necessarily determined by a polynomial function.

Generally the sequences are obtained through data collected from an experiment or a phe-
nomenon, however there are problems in which the values of the abscissa are equally spaced.
Aiming at its resolution, will be reported two formulas, the first to obtain the polynomial inter-
polating from a sequence of forward differences whose order is greater then to another that we
knows the function. The second from a sequence of forward differences whose order is smaller
than the other one.

Development

Firstly, let A be the fixed value of the abscissa spacing and be also the following polynomial

of degree n
Po(®) = apnpy - 2" + Q1) - 2" A T+ Ao -

According to Lemma in (BARBOSA; BELLOMO; FILHO, 1973). The imposition of the
operator A to a polynomial lowers the degree and the coefficient of the unknown with higher
power is h - n - a(,,). But we will present a more specific and analytical notation than the
operator A and a more general theorem to the presented Lemma, .

f Autor correspondente: vpdomingues0010gmail.com.

Sigmae, Alfenas, v.8, n.1, p. 35-39. 2019.


vpdomingues001@gmail.com

ISSN: 2317-0840 Domingues (2019) 36

Definition 0.1 Let (x;, AY f(x;)),0 < i <m —w, be m+ 1 —w distinct points and the values
of x; equally spaced such that x;11 — x; = h,Vi.Also let Pp,—(x) be the polynomial interpolating
of degree m — w of these m —w —+ 1 points.

¢
1. Indicates per \/Pm_w(a:) the polynomial of degree m — w — t which contains the points

h
formed by forward differences of order w4+t .

t
2. Indicates per /\Pm,w(x) the polynomial of degree m — w + t which contains the points

h
formed by forward differences of order w —t .

Theorem 0.1 Let (x;, A} f(x;)),0 < i < n, be n+1 distinct points and the values of x; equally
spaced such that x;11 — x; = h,Vi.Also let P,(x) be the polynomial interpolating of degree n of
these n + 1 points. Then

\1/Pn<x) = nle’“ Zn: L <}Z;) S a(jn) (1)

h k=0 j=k+1

Proof. By definition in 2.1 \/ P, (z;) = AW f(z;). Therefore
h

1

\ Palws) = AF f(ai + h) = A} f () (2)

h
By hypothesis P,(x;) = A f(x;),0 < i < n and by equation (2).So

1

\/ Pu(@i) = Pa(i + h) — Po(a;) (3)
h

1

= \/ Pn(l'z) = Z(.%'Z + h)j . a(jm) - Z 1‘5 . a(jyn)
h j=0 7=0
1

= \/ Pu(@:) = Z((xi +h)Y —al) - agm

h
1
1 2 2
:>\/Pn($z) =h- <1> “a(1p) T <h- <1> -xi-l-h?. <2>> cag) + ot
h
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2 " n—1 n—2
(h .<n_2>-a(n7n)+h-<n_2>-a(n_lm)).xi + o+
n - n—1 1
(hn'(o)'a(n,nﬂrh" 1-( 0 >~a(n1,n)+---+h.(O>.a<1,n>)-x?

For the Fundamental Theorem in (BARBOSA, 1973) there exists a single polynomial of de-
gree no greater than n — 1 satisfying these n point : (z;, A}f“f(:ci)),
0<i<n-1. So

Corollary 0.1 Let (z;, AY f(x;)),0 < i < n, be n+1 distinct points, and the values of x; equally
spaced such that x; 11 — x; = h,Vi .Also let P,(x) be the polynomial interpolating of degree n of
these n + 1 points. Then

n+1 .
-k (J
1 c [ X (])

_ k+1 j=k+2
/h\Pn(x) = a@on+1) + kzo$ : N o1 (4)
k
Proof. From equation (1) we have that
n+1 ‘ ]
apmy =y W (k> SQ(jn+1) ()

j=k+1

k+1 k42
a(k’n):h< i )’a(k+1,n+1)+h2'< ! )'a(k+2,n+1)+”'+

Nl n+1
h +1 k< k )'a(n+1,n+1)

=

A(k+1,n+1) = . (k)—i— 1) (6)
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Applications

Here, to present the efficacy of the described models in the areas of arithmetic progressions
of higher order and polynomial Interpolation we apply some examples.

Example 0.1 Given the pairs (0;1),(0,5;0,375), (1;0).Establish the polynomial interpolating
P2($)

Tabela 1: Difference Table
) 0 1 2
z; 0 0,5 1
vi 1 0,375 | 0
Adsyi | —0,625 | —0,375
A3y [ 0,25
1 2
JAN
= N\ Po(z) = 0’5?0 cx 4 Absy0 = 0,5z — 0,625
0,5 h- (0)
1 2 (2 2
a a — h*- -a 3
= /\P1 (x) = 7(1’12) ca? 4 0D 1(0) @2 o+ Aé,g,yo = % - ; + 1.
0,5 h- (1) h (0)

Example 0.2 Establish the general term of the sequence {ay} defined by the form:

a; =11
Unal = ap +203 + 302 +5n+7
We have:

Aap, =203 +3n2+5n+7
1

:>an:/\2n3—|—3n2—|—5n—|—7 .

1
Applying equation (6) recursively :

1 1 3
3 1
(1(174)—7— <2+0+2> -
And a4 =ap=a1 —Dag=11-7=4

h n*  3n?
:>an:/\2n3+3n2+5n+7:?+7+5n+4.
1
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Example 0.3 Establish the sum of a sequence given by the general term {n3} .

Demonstrates that AS,, = a,+1 (BARBOSA, 1973) . So :
AS,=Mn+1)3=n>+3n2+3n+1
1

:>Sn:/\n3+3n2+3n+1.
1

Applying equation (6) recursively :

1
A4) = o
1 1 1
=(3—-6-2).2 =2
4(34) < 4) 372
1 1 1 1
= — —44.= L=
1 1 1
=1—(>+=+-]=0
CL(174) <4+2+4)
As S():Sl—ASo,Sl:al and AS():CLL Then a(074):O.
1 4 3 2
_ 3 2 .. n
=Sy = \n’+3n" +3n+1= Tttt

1

Final considerations

If we not consider the number of operations to obtain binomial numbers, the calculation of
the powers of spacing and the determination of a(gy), then for the application from equation

1 2
(4) in the calculation of /\ P,_1(x),n > 1, were done n divisions,% - g additions and n? — n
h

2

products, totalizing

reduces to n2 —n .

In this way, it is possible to observe the efficiency in the use of the technique, when comparing
to other methods adopted in the literature, both to obtain the general term, in which the
sequence is exposed of inductive manner, and to get the polynomial from the sum of a arithmetic
sequence of order k, declared analytically.

operations.Now for spacing equal to one, the calculation performed

References

BARBOSA, R.M. Cdlculo Numérico: Interpolacdo Polinomial, 2.ed, Sao Paulo: Livraria
Nobel, 1973.

BARBOSA, R.M.; BELLOMO, D.P.; FILHO, E.A. Cdlculo Numérico: Cdlculo De Diferencas
Finitas. Sao Paulo: Livraria Nobel, 1973.

Sigmae, Alfenas, v.8, n.1, p. 35-39. 2019.



