
ISSN: 2317-0840

Application of Molecular Topology for Predicting the
Antioxidant Activity of a Group of Phenolic Compounds

Fernando de Souza Bastos1†, Diogo da Silva Machado2, Jaime Barros Silva Filho3, Maria Luiza
Ferreira Delfim4.

1Universidade Federal de Viçosa, Centro de Ciências Exatas e Tecnológicas, Departamento de Estat́ıstica,
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Abstract: The study of compounds with antioxidant capabilities is of great interest to the scientific
community, as it has implications in several areas, from Agricultural Sciences to Biological Sciences,
including Food Engineering, Medicine, and Pharmacy. In applications related to human health, it is
known that antioxidant activity can delay or inhibit oxidative damage to cells, reducing damage caused
by free radicals, helping in the treatment, or even preventing or postponing the onset of various diseases.
Among the compounds that have antioxidant properties, there are several classes of phenolic compounds,
which include several compounds with different chemical structures. Despite their importance, identifying
and predicting the antioxidant potential of phenolic compunds remains a significant challenge due to their
structural diversity and the complexity of their mechanisms of action. In this work, based on the molecular
branching of compounds and their intramolecular charge distributions, and using Molecular Topology, we
propose a significant topological-mathematical model to evaluate the potential of candidate compounds to
have an antioxidant function. The advantage of the model is that it allows for efficient predictive analysis,
assisting in the identification of promising compounds more quickly and accurately, which can accelerate
the development of new antioxidants with therapeutic applications.
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Introduction

Studies and research on compounds with antioxidant activities have gained prominence
in recent years. This is because antioxidant activity delays or inhibits oxidative cell damage,
decreasing the damage caused by free radicals, preventing or postponing the onset of various
diseases and also helping in the treatment of diseases such as diabetes, inflammatory diseases,
cardiovascular disorders, associated with oxidative stress, some types of cancer and aging (Soo-
brattee et al. (2005), Martins et al. (2016), Yasir et al. (2016), Yoo et al. (2017), Karunakaran
et al. (2018), and Muller et al. (2019)).

Plants contain phenolic acids, which are used as a food base. Vegetable leaves, seeds,
and fruit peels, in general, have a higher concentration of phenolic compounds. These phenolic
acids are commonly found as amides, esters, or glycosides. The research and prediction of new
antioxidant molecules are critical for public health. By inhibiting free radicals, antioxidants can
help to reverse cell oxidation Kumar et al. (2019 2019).

Measuring the antioxidant activity/capacity of foods and biological compounds is there-
fore essential not only to ensure food quality but also to assess the efficiency of dietary antio-
xidants in the prevention and treatment of diseases related to oxidative stress. Organic solvent
extraction can be used to identify phenolic compounds in plants Khoddami et al. (2013).

Among the compounds that have antioxidant properties, there are several classes of
phenolic compounds, which are those that have one or more hydroxyl groups directly linked
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to an aromatic ring. Such compounds represent a large group of molecules with a variety of
functions related to plant growth, development, and defense. They include signaling molecules,
pigments, and flavors that can attract or repel, as well as compounds that can protect the plant
against insects, fungi, bacteria, and viruses.

With the growing recognition of their bioactive properties, research on the antioxidant
behavior of phenolic compounds-which include thousands of molecules with diverse chemical
structures—has increased significantly in recent decades. Furthermore, the methods and instru-
ments used to measure antioxidant activity/capacity have made remarkable progress. According
to Munteanu et al. (2021), there are several methods for assessing this ability, which generally
fall into three distinct categories, namely, spectrometry, electrochemical assays, and chromato-
graphy. However, all are based on chemical reactions that demand time and financial resources.

Therefore, the implementation of mechanisms that can provide an early estimate of the
potential of a molecule to exert an antioxidant function is an interesting research strategy.
Molecular Topology based on Quantitative Structure-Activity Relations (QSAR) is a tool that
has great potential in this context. The QSAR technique, developed by Hansch et al. (1964),
combines Topology and Statistics concepts and its approach can be described as a statistical
method of data analysis to develop models that can correctly predict certain biological activity or
properties of compounds based on their structure chemistry. QSAR techniques apply descriptors
based on molecular structures and use algorithms to correlate the obtained descriptors with the
value of the target property of interest, for more information we suggest Cramer (2012).

The development of Molecular Topology is attributed to Randic (Randic, 1975) and
Kier-Hall (Hall et al., 1978 1978; Kier, 2012) and is based, above all, on the premise that, in
many cases, there is a close relationship between the structures of organic compounds and many
of its chemical and biological properties. From this, a set of suitable numerical characterizations
for the molecules of interest is obtained. Such characterizations are designated by topological
indices, which allow, after statistical treatment (specifically, Linear Discriminant Analysis), the
classification into groups, with greater and lesser probabilities of having a chemical function of
interest. It should be noted that Molecular Topology has been used satisfactorily in obtaining
new compounds for the production of drugs, cosmetics, and agrochemicals of great interest to
society, see more details in Galvez et al. (1994b) and Mahmoudi et al. (2006) and Amigó et al.
(2007).

To obtain the topological indices, the molecules to be considered are mathematically
modeled as Topological Graphs, naturally taking their atoms as vertices and atomic bonds as
edges. Thus, from the graphs, numerical matrices are obtained containing information about
the molecules (such as the structural arrangement, global charge transfer and between pairs of
atoms, atomic electronegativity, among others), which, through specific formulas, lead to the
survey of topological indices.

Despite the growing recognition of the bioactive properties of phenolic compounds and
the significant advances in methods to measure antioxidant activity, identifying and predicting
the antioxidant potential of these compounds remains a considerable challenge. This difficulty
arises from the structural diversity of phenolic compounds, which encompasses thousands of
molecules with distinct chemical properties, and the complexity of their mechanisms of action.
Traditional methods for assessing antioxidant capacity, while effective, are time-consuming and
require considerable financial and material resources, limiting their applicability in large-scale
screening efforts.

Furthermore, the lack of efficient and cost-effective tools for early-stage prediction of
antioxidant potential hinders the identification and development of new antioxidant molecules
with therapeutic or industrial applications. This gap underscores the need for innovative me-
thodologies that can streamline the evaluation process and provide reliable predictions based on
molecular characteristics.
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Utilizing Molecular Topology and Linear Discriminant Analysis, the objective of this
study was to develop a predictive QSAR model to investigate the antioxidant activity of a group
of phenolic compounds.

Materials and Methods

Compounds Analyzed and Their Antioxidant Activities

Phenolic compounds are the most abundant antioxidants in the human diet. They have
a considerable structural diversity, characterized by the hydroxyl groups on aromatic rings.
According to the number of phenol rings and the structural elements that bind rings to one
another, such compounds are grouped and classified as simple phenols, phenolic acids, flavonoids,
xanthones, stilbenes, and lignans. They are widely distributed in plants and play important roles
in defense against oxidative stress Vuolo et al. (2019).

Phenolic compounds range from simple structures, such as phenolic acids, to complex
polymers, such as lignins and tannins. Cheng et al. (2002) reports that this structural diversity
is associated with different antioxidant mechanisms, such as free radical scavenging, hydrogen
atom or electron donation, and the ability to chelate transition metals, which prevents oxidation
chain reactions.

It is important to note that phenolic compounds combat oxidative stress in several ways:

� Soobrattee et al. (2005) highlights that the neutralization of Reactive Oxygen Species:
They donate electrons or hydrogen atoms to neutralize free radicals such as the hydroxyl
radical and superoxide anion.

� Transition Metal Chelation: By binding to metal ions such as iron and copper, phenolics
prevent them from catalyzing the formation of free radicals via Fenton reactions Khokhar
et al. (2003).

� Modulation of Cell Signaling Pathways: Some phenolics regulate the expression of antio-
xidant genes (Nguyen et al. (2003 2003)).

According to Soobrattee et al. (2005), the intake of phenolic compounds has been as-
sociated with a reduced risk of chronic diseases, such as cardiovascular, neurodegenerative and
cancer. Compounds such as quercetin and gallic acid have high antioxidant activity, being more
effective than synthetic antioxidants in some tests.

With their diverse structures and multiple antioxidant mechanisms, phenolic compounds
play a pivotal role in mitigating oxidative stress, with significant implications for both human
health and industrial applications. Charts 1, 2, and 3 present the phenolic compounds analyzed
in this study, selected for their reported antioxidant activity and structural variability. The
topological indices, described in subsection Topological Load Indexes, were calculated for the
compounds listed in Charts 1 and 2. These indices served as molecular descriptor vectors
to estimate the discriminant function, facilitating the differentiation of compounds with high
antioxidant activity from those with low or negligible activity.

The choice of topological indices was guided by their sensitivity to specific molecular
features, such as connectivity and branching, which are critical for the antioxidant mechanisms
of phenolic compounds. Chart 1 presents the compounds with experimentally confirmed antioxi-
dant capacity, highlighting their structural variations. In contrast, Chart 2 includes compounds
with similar structural frameworks but minimal or no measurable antioxidant activity, serving
as a comparative set. Chart 3 consolidates additional relevant properties and indices for all
compounds studied, facilitating a comprehensive analysis.

In Chart 3, we present a group of five phenolic compounds with confirmed antioxidant
capacity. These compounds were selected as the test group to validate the discriminant function
developed in this study.
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Chart 1: Structural formulas of phenolic compounds used in the present study, classified with
non-active antioxidant capacity.

Source: from the authors (2024).
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Chart 2: Structural formulas of phenolic compounds used in the present study, classified with
non-active antioxidant capacity.

Source: from the authors (2024).
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Chart 3: Structural formulas of phenolic compounds used in the present study as a test group,
all with antioxidant capacity.

Source: from the authors (2024).

Calculation of Topological Indices

Topological indices are numerical functions of molecular graphs and are considered im-
portant molecular descriptors. According to Vasilyev et al. (2014), in addition to being graph
invariant, topological indices do not consider information about molecular geometry, such as
bond lengths, bond angles, or twist angles, but instead, encode information about adjacencies
of atoms and branches within a molecule. Also, according to the same authors, since the com-
putation of topological indices uses fewer resources than the computation of those molecular
descriptors that also take into account molecular geometry, topological indices have gained con-
siderable popularity and many new topological indices have been proposed and studied in the
literature specialized in recent years.

We assume that the following aspects of molecules are relevant to the investigation of
the occurrence of antioxidant activity: the type of molecular branching and the distribution
of intramolecular charge. Therefore, in this work, we use two types of topological indices: the
Randic index χ1 and the topological load indices G4, J2 and J5.

All the topological indices used in this work were obtained with the aid of an appropriate
python algorithm that is available in the supplementary material that accompanies this article.
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Randic Index

According to Gutman et al. (2018), among the several hundred descriptors of molecular
structures based on graphs (see Todeschini et al. (2008)), the Randic index is certainly the most
widely applied in chemistry and pharmacology. This index characterizes the branching of the
molecular graph and was introduced by Milan Randic (Randic, 1975). If E(G) denotes the set
of edges of the molecular graph G, then the Randic index of G is defined by

χ1(G) =
∑

eij∈E(G)

(degi · degj)−1/2, (1)

where, degi and degj are the degrees of vertices i and j, respectively.

Topological Load Indexes

Topological Charge Indices were introduced in the literature by Galvez et al. (1994a)
and have the ability to describe molecular charge distribution. In fact, given a molecular graph
G, let A(e) be its adjacency matrix (modified), with the relative electronegativity of each atom
in the main diagonal entries and D∗ the distance matrix inverse square of G, with entries on
the main diagonal taking on a value of zero. Consider M = [mij ] the square matrix of order N
(where N is the number of vertices of G) defined by

M = A(e)×D∗ (2)

and take, for each i, j, with 1 ≤ i, j ≤ N the charge term CTij defined by

CTij = mij −mji. (3)

The (valency) topological load indices, Gk, with 1 ≤ k ≤ N − 1 is defined by

Gk =

i=N−1,j=N∑
i,j=i+1

δ(k, dij) · | CTij |, (4)

where δ is the Kronecker delta function (δ(p, q) = 1, if p = q and 0 otherwise) and dij denote
the entries of the matrix of topological distance. Remember that in the main diagonal entries of
the matrix A(e) the relative electronegativity of an element Q can be calculated by the formula

Re−(Q) = λ · (e−(Q)− e−(C)), (5)

where e−(Q) and e−(C) denote, respectively, the Pauling electronegativity of the element Q and
the carbon atom C. The value λ constitutes the conversion factor. In this work, we consider two
values for λ: 2.2 (using hydrogen normalization = 0.77) and 3.28 (using chlorine normalization
= 2). For this reason, to distinguish the two respective situations, we will use the symbols G2.2

k

and G3.28
k to indicate the considered conversion factor.
On the other hand, the index Jk is defined by,

Jk =
Gk

N − 1
, k = 1, · · · , N − 1 (6)

which measures the average value of charge transfer for each chemical bond in the substance.
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Discriminant Analysis

Discriminant Analysis is a statistical method used to classify observations into predefined
groups based on a set of predictor variables. The goal is to derive a discriminant function that
best separates the groups by maximizing the between-group variance relative to the within-
group variance. This technique is particularly useful when the groups are known a priori, and
the objective is to assign new observations to one of these groups.

The discriminant function is a linear combination of the predictor variables that provides
the best separation between two or more groups. The function is expressed as:

DF = w1x1 + w2x2 + · · ·+ wnxn + c, (7)

where wi are the coefficients (weights) for the predictor variables xi, and c is a constant. These
coefficients are calculated to maximize the ratio of the variance between groups to the variance
within groups.

Once the discriminant function is established, it can be used to classify new observations.
For a two-group problem, let the discriminant scores for the two groups be denoted by D1 and
D2. The classification rule is defined as:

Assign to Group 1 if D ≥ Dc, Assign to Group 2 if D < Dc, (8)

where Dc is the classification threshold, typically chosen as the midpoint between the group
centroids:

Dc =
µ1 + µ2

2
, (9)

with µ1 and µ2 being the mean discriminant scores of Group 1 and Group 2, respectively.
For multi-group problems, the classification involves calculating the discriminant scores

for each group and assigning the observation to the group with the highest score.
In this study, Linear Discriminant Analysis (LDA) was applied to classify phenolic com-

pounds into groups with and without antioxidant activity. The predictor variables were the
topological indices derived from the molecular structures of the compounds. Fisher’s discrimi-
nant function was used to compute the scores for each compound, and the classification rule
was applied to assign compounds to their respective groups. This approach not only provided
a quantitative method for distinguishing between active and non-active compounds but also
facilitated the identification of molecular features contributing to antioxidant activity.

To enhance the robustness of the Discriminant Analysis, we calculated a set of topo-
logical indices for each phenolic compound. These indices quantify molecular features such as
connectivity, branching, and electron distribution, capturing structural aspects relevant to an-
tioxidant activity. For classification, the experimental data consisted of antioxidant activity
determined by DPPH free radical scavenging and lipid peroxidation inhibitory effects expressed
as the concentration of 50% lipid peroxidation inhibition (IC50/ mmol , L−1).

QSAR Algorithms: Linear Discriminant Analysis

To detect the presence of the antioxidant function in phenolic compounds, the QSAR
prediction model by Linear LDA was established, a branch of multivariate statistics used in
problems of discrimination and classification of categories or objects, which appears in - Fisher’s
seminal work Fisher (1936), and is currently a widespread topic Johnson et al. (1992) and
Khattree et al. (2000). In addition, several works use Discriminant Analysis in establishing
QSAR models, see Cronin et al. (1994), Contrera et al. (2005), Konovalov et al. (2008), Ayoub
et al. (2018a), and Lu et al. (2022).

Although Discriminant Analysis cannot provide concrete predicted values of the anti-
oxidant effect, it can determine the likelihood of classifying compounds as active or inactive
for antioxidant activity and thus aid in the discovery and development of efficient antioxidants.
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Therefore, we obtained a discriminant function (DF) that allows a classification between com-
pounds with active and inactive antioxidant activity. This function linearly depends on the
topological indices considered, which are assumed to be usable in distinguishing compounds.

In the set of phenolic compounds used to obtain the discriminant function, we separated
each compound into two groups: the first formed by compounds with proven antioxidant activity
and the second by compounds without antioxidant activity. The linear discriminant analysis
(LDA) was applied using the statistical software R Core Team (2024).

Results and Discussion

To enhance the robustness of the Discriminant Analysis, a set of topological indices was
calculated for each phenolic compound in both the training and test groups. These indices,
presented in Table 1, include features such as connectivity, branching, and electron distribu-
tion, and were used as predictive variables to establish a discriminant function (DF) capable of
classifying compounds as antioxidant or non-antioxidant.

Table 1: Topological indices related to the phenolic compounds presented in Charts 1 and 2,
divided by group, as used in the Discriminant Analysis.

Compounds no. χ1 G3.28
4 J3.28

2 J3.28
5 G2.2

4 J2.2
2 J2.2

5

Antioxidant Group Training

1 13.72456 3.59624 0.33965 0.05315 3.41601 0.33924 0.05059
2 13.19576 3.04046 0.3174 0.05595 2.92031 0.31262 0.05329
3 13.19576 3.07157 0.3174 0.05666 2.95142 0.31262 0.05401
4 12.77311 2.51578 0.26956 0.05174 2.45571 0.2603 0.049
5 5.35317 1.55516 0.41686 0.06137 1.14092 0.4076 0.04784
6 5.63077 0.59578 0.26229 0.01284 0.53571 0.3079 0.00993
7 4.37239 0.67669 0.46465 0.02008 0.59762 0.51897 0.01968
8 3.84159 0.84513 0.42525 0.0125 0.73126 0.43543 0.0125
9 9.83297 2.81071 0.5237 0.06254 2.5695 0.51444 0.04775

Non-antioxidant Group Training

10 4.0856 0.57801 0.54821 0.04045 0.51793 0.52525 0.02297
11 4.40225 1.18803 0.4169 0.03334 1.01364 0.40595 0.03293
12 5.06293 1.14313 0.50661 0.05282 1.102253 0.49734 0.03508
13 3.99562 1.17424 0.34116 0.0303 1.05364 0.35315 0.025
14 3.89175 0.76889 0.42424 0.03879 0.76889 0.45645 0.03237
15 3.42492 0.71179 0.44781 0.01066 0.53157 0.41975 0.01016
16 4.29869 1.01402 0.45592 0.0397 0.83379 0.47666 0.02371
17 3.4309 0.74291 0.45847 0.00694 0.56268 0.44444 0.00694
18 5.34935 1.43179 0.47242 0.06691 1.37126 0.46315 0.05508

Test Group

19 8.1157 1.84068 0.31414 0.04914 1.84651 0.33093 0.03719
20 9.89595 2.43829 0.52694 0.03863 1.83233 0.43631 0.02781
21 9.40614 2.59738 0.50404 0.06857 2.11678 0.50306 0.04338
22 8.02602 3.50632 0.47763 0.05734 2.66436 0.5331 0.04339
23 7.76622 2.52803 0.33478 0.04599 246.000 0.40183 0.04106

Source: from the authors (2024).
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The discriminant function derived in this study is defined as:

DF = −31.023674 + 4.4419931χ1 + 41.2828013G3.28
4 − 151.5908411J3.28

2 −
− 270.9518622J3.28

5 − 52.570601G2.2
4 + 180.1409685J2.2

2 + 310.4418446J2.2
5

this function combines the topological indices into a single metric, DF , which determines the
classification of each compound. Compounds are classified as antioxidant if DF ≥ 31.02367;
otherwise, they are classified as non-antioxidant.

The discriminant function was first applied to the training group, which consisted of 18
compounds (9 antioxidants and 9 non-antioxidants). The classification results showed an overall
accuracy of 94.4%, with 89% of the antioxidant group and 100% of the non-antioxidant group
correctly classified.

The model was then validated using a test group of five phenolic compounds. In this
independent evaluation, the model achieved 80% accuracy, with only one antioxidant compound,
Catechin, misclassified as non-antioxidant (DF < 31.02367). Table 1 presents the classification
results for the test group.

Table 2: Classification of compounds after application of the discriminant function.

Compounds Discriminant Function Classification

1 Catechin 25.19 Non−antioxidant
2 Chlorogenic acid 45.18 Antioxidant
3 Rosmarinic acid 46.83 Antioxidant
4 Ellagic acid 61.90 Antioxidant
5 Quercetin 31.46 Antioxidant
6 α-Tocopherol 40.77 Antioxidant
7 β-Tocopherol 40.20 Antioxidant
8 γ-Tocopherol 39.88 Antioxidant
9 δ-Tocopherol 38.72 Antioxidant
10 Curcumin 35.79 Antioxidant
11 Resveratrol 36.75 Antioxidant
12 Gallic acid 39.66 Antioxidant
13 Gentisic acid 27.98 Non−Antioxidant
14 Synringic acid 36.46 Antioxidant
15 p-coumaric acid 22.47 Non−Antioxidant
16 Vanillic acid 26.43 Non−Antioxidant
17 Ferulic acid 21.11 Non−Antioxidant
18 Vanillin 22.29 Non−Antioxidant
19 o-coumaric acid 26.06 Non−Antioxidant
20 p-hydroxybenzoic acid 24.65 Non−Antioxidant
21 Protocatechuic acid 30.48 Non−Antioxidant
22 Salicylic acid 27.17 Non−Antioxidant
23 Zingerone 21.57 Non−Antioxidant

Source: from the authors (2024).

These results demonstrate that the discriminant function effectively separates antioxi-
dant from non-antioxidant compounds based on their topological indices. The high accuracy in
the training group and the good performance in the test group indicate the robustness of the
proposed QSAR model. The misclassification of Catechin, a known antioxidant, highlights po-
tential areas for refinement, such as incorporating additional molecular descriptors or exploring
non-linear discriminant functions.
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The predictive power of the model underscores the potential of combining Molecular
Topology and Discriminant Analysis for evaluating antioxidant activity in phenolic compounds.
This approach offers a cost-effective and efficient alternative to experimental methods, facilita-
ting the early identification of promising antioxidant candidates for therapeutic and industrial
applications. Tables 1 and 2 provide a detailed breakdown of the indices and classification
results.

Comparison with the Literature on QSAR for Phenolics

Previous studies confirm that topological indices are powerful tools for predicting biolo-
gical activities of phenolic compounds. For instance, Chen et al. (2015) utilized a quantitative
structure–activity relationship approach was used to build a multiple linear regression model
describing the dependence of antioxidant activity on structure of compounds, using features
exclusively related to their topology. Our work align with this the approach of these authors,
highlighting the relevance of global indices like G3.28

4 and J3.28
5 for capturing antioxidant activity

patterns.
In comparison with the study by Spiegel et al. (2020), which developed QSAR models

for antioxidants in polymeric materials, our approach offers a simpler discriminant function but
achieves similar classification accuracy. Both approaches emphasize the importance of structural
descriptors in modeling antioxidant activity. Additionally, our method focuses on phenolic
compounds relevant to dietary sources, complementing their work on synthetic polymers.

The study by Nagarajan et al. (2020) applied QSAR models to identify antioxidants in
natural extracts, achieving a predictive accuracy of approximately 85%. While their approach
incorporated non-linear models and more diverse descriptors, our linear discriminant function
provides comparable performance with a more interpretable structure, suggesting that topolo-
gical indices alone can be sufficient for high-accuracy predictions in specific contexts.

The work of Laganà Vinci et al. (2024), which utilized chromatographic data for QSAR
modeling, demonstrates the potential of combining experimental and computational methods
for detailed profiling of phenolic antioxidants. Compared to our study, their model offers higher
resolution in identifying subtle differences between structurally similar compounds. However,
our approach is advantageous for large-scale screening, as it avoids the need for experimental
chromatographic data.

The specific QSAR model developed by Ayoub et al. (2018b) for proteasome inhibitors
from Olea europaea and Ficus carica highlights the utility of tailored models for unique com-
pound classes. Their focus on specialized descriptors for proteasome activity from plant source is
analogous to our use of topological indices for antioxidant activity, emphasizing the adaptability
of QSAR methodologies to different biochemical properties.

The misclassification of Catechin as non-antioxidant can be attributed to limitations in
the linearity of the model or the insufficiency of descriptive variables specific to highly active
compounds. This aligns with observations by Soobrattee et al. (2005), who highlighted that
compounds like flavonoids exhibit more complex antioxidant mechanisms, such as metal chela-
tion and modulation of cellular signaling pathways, which may not be fully captured by purely
topological metrics.

The use of topological indices in Discriminant Analysis proves promising for the initial
screening of compounds with antioxidant potential. This approach can accelerate the discovery
of new antioxidants for applications in food, pharmaceuticals, and cosmetics, reducing the time
and costs associated with traditional experimental methods.

Future works include:

� Expanding the dataset to include structurally diverse compounds to improve model gene-
ralization.
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� Investigating non-linear approaches, such as Quadratic Discriminant Analysis or Neural
Networks, to capture more complex interactions.

� Integrate additional physicochemical properties, such as polarizability and acidity cons-
tants, to complement topological indices.

These improvements could help overcome current limitations and provide a more robust
approach to QSAR modeling of phenolic compounds.

Conclusions

In this study, Discriminant Analysis was employed to establish a QSAR model incorpo-
rating topological indices to predict the antioxidant activity of 23 known phenolic compounds.
The model demonstrated high accuracy, correctly classifying 94.4% of the training set and 80%
of the test set. The use of topological indices, particularly sensitive to molecular branching (χ1)
and intramolecular charge distributions (G4, J2, and J5), proved to be a robust approach for
capturing structural features relevant to antioxidant activity.

The proposed methodology provides a cost-effective and efficient alternative to expe-
rimental antioxidant assays, enabling the preliminary screening of potential antioxidant com-
pounds. By identifying promising candidates computationally, this approach can save time and
financial resources, accelerating the development of new antioxidants for applications in food,
pharmaceuticals, and cosmetics.

However, the study also highlights certain limitations, such as the misclassification of
Catechin, which may reflect the need for additional descriptors or non-linear modeling techni-
ques to account for complex antioxidant mechanisms. Future work should focus on expanding
the dataset to include a more diverse range of phenolic compounds, integrating additional phy-
sicochemical properties, and exploring advanced computational techniques, such as machine
learning models, to improve prediction accuracy and generalizability.

In conclusion, the combination of Discriminant Analysis and Molecular Topology de-
monstrated strong potential for QSAR modeling of phenolic compounds. This approach repre-
sents a valuable tool for researchers, providing early-stage insights into the antioxidant properties
of molecular compounds and paving the way for further advancements in the field of computa-
tional chemistry and bioactivity prediction.
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