
ISSN: 2317-0840

Developing a Robust Shiny Application Integrated with SQL Databases for Aquaculture

Daniel Pinto Siqueira1† Gabriel Rodrigues da Silva1, Luan Patrick Moura de Souza1, Carlos Antônio
Zarzar1 Paulo Roberto Brasil Santos1

1Federal University of Western Pará (UFOPA), Monte Alegre campus

Abstract: This work presents the development of an application for managing collective feed purchases in aqua-
culture, aiming to reduce costs and optimize logistics. This study aims to validate the robustness of applications
developed using the Shiny framework of the R programming language by integrating a Database Management
System (DBMS) in the backend. This aims to demystify the predominant perception that Shiny is exclusively a
prototyping tool, demonstrating its viability for robust production applications. The adopted methodology encom-
passes three stages of software development: Backend, Intermediate Infrastructure, and Frontend. In the Backend
stage, database modeling was carried out, which included conceptual, logical, and physical modeling, ensuring
the system’s efficiency and security. The choice of PostgreSQL as DBMS was based on the need for a robust and
secure system. The Intermediate Infrastructure was developed using the R language with the Golem framework,
facilitating the application’s development and deployment. Its folder and metadata structures promote efficient
project organization. The Frontend was built with the Shiny framework, standing out for its modularity and code
organization. The developed modules include the interface and system logic for each specific functionality, such as
supplier registration and stock management. Overall, the work presents a systematic and organized approach to
application development, encompassing database modeling to user interface implementation, aiming to meet the
needs of collective feed purchase management in aquaculture.

Keywords: Web Application; Aquaculture; R software; PostgreSQL; Shiny.

†Autor correspondente: daniel.pis@discente.ufopa.edu.br Manuscrito recebido em: 31/07/2024
Manuscrito revisado em: 24/10/2024
Manuscrito aceito em: 29/10/2024

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

daniel.pis@discente.ufopa.edu.br

Siqueira et al. (2024) 254

Introduction

The feed cost is one of the main factors in aquaculture production, representing a significant
portion, usually between 50% and 80% of the total required during a production cycle in fish farming.
This is due to the substantial costs associated with feed formulation by industries. To ensure successful
fish production, it is crucial to have tools that cover a variety of parameters related to feed acquisition
and use. Spreadsheets are a viable option for organizing essential production information, allowing for
strategy formulation adaptable to specific farm requirements.

Although many producers use Excel spreadsheets for fish production planning, their effective-
ness is limited when detailed technical information is needed. This is because utilizing these tools re-
quires skills that not all producers have. An alternative approach to efficient fish farming planning, which
does not rely on specialized skills, is the adoption of easy-to-use designer programs developed with a
focus on user experience, thereby facilitating and expanding the user base of these software tools. The
R programming language, initially created for a community of statisticians, has been growing in recent
years, and it is now possible to develop web applications that can include data modeling functionality
when appropriate.According to Batista e Oliveira (2022), the R environment is an integrated structure
of software resources designed to manipulate data, perform calculations, and generate graphical repre-
sentations. Together with the R language (RDEVELOPMENT, 2011), RStudio constitutes an integrated
environment that allows for expansion through the inclusion of packages, enabling the creation of Shiny
applications, the preparation of reports using RMarkdown, and the integration of other packages into the
R language. Although the use of RStudio for the development of Shiny apps is not widely adopted among
developers due to the stereotypical perception that R along with Shiny is intended only for prototyping
applications, this conception is considered restrictive. In reality, RStudio can function as a primary
platform for development, providing resources for the creation of robust applications and offering the
opportunity to develop applications for free.

Database modeling plays a crucial role in the field of data science, being essential for the develop-
ment of efficient and well-structured systems. This process involves the representation and organization
of data handled by an application or system, aiming to understand, visualize, and manage information
optimally. It consists of creating abstractions and representations that describe relationships and the
structure of data storage and access. According to Costa, Resende e Silveira (2008), this practice is one
of the fundamental activities in software development.

The resulting models act as a link between the understanding of the problem domain and its tech-
nical implementation, facilitating clearer communication between business professionals and software
developers. Thus, this work proposed the integration of the R programming language with a web appli-
cation based on the Shiny framework, also using the SQL programming language (relational database)
for manipulating relational databases, in addition to applying database modeling concepts. The objec-
tive was to develop a robust application aimed at aquaculture for managing collective feed purchases in
aquaculture to reduce production costs.

Material e Methods

The application aims to facilitate collective feed purchases among fish farming producers, aim-
ing to reduce costs and optimize logistics and storage. For this, it records feed purchase transactions,
including details such as manufacturing date, batch, manufacturer, supplier, and distribution to produc-
ers associated with the cooperative.

For the preparation and construction of the application, we adopted a methodological approach
divided into three distinct stages: Backend, Intermediate Infrastructure, and Frontend, as illustrated in
the diagram presented in Figure 1. This division allowed for a clear and systematic organization of
the process of creating, designing, and building the application, facilitating resource management and
progress monitoring in each development phase.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 255

Figure 1: Diagram representing the methodological approach divided into three stages (Backend, Fron-
tend, and Intermediate Infrastructure) of the Software Architecture for application development.

Source: from the authors (2024).

Backend

The software development area is widely addressed with architectures categorized into backend,
frontend, and fullstack. The backend plays a crucial role by connecting the database and managing the
infrastructure required for the application to function, in addition to implementing the business logic.

In this project phase, the structural model of the database is developed, defining entities, at-
tributes, and relationships according to the software application, and selecting the Database Management
System (DBMS). Database modeling is divided into three main levels: conceptual, logical, and physical,
each intended to be applied in a DBMS.

Conceptual modeling

The conceptual model visualizes entities, relationships, and key attributes of the problem, being
an abstraction close to the users’ reality. In this phase, understanding the requirements was prioritized,
observing relationships, and identifying data integrity issues.

Technological issues were not considered in this phase because some model components are
not compatible with relational database resources. This requires transforming the Entity-Relationship
Model into a suitable notation for this implementation. The resulting logical model depends on the
characteristics of the chosen DBMS.

Logical modeling

The logical model was based on the conceptual model, which logically describes how data is
stored and related to each other, obtaining a graphical representation of the database structure. In the
logical model, physical implementation details were not considered, but the conceptual form of the data
was described, allowing for flexible system projection.

At this stage, the data to be stored in the system was presented, focusing on concepts and re-
lationships between tables (entities). Additionally, normalization methods were applied to ensure data
integrity. More details about the method can be found in (CODD, 1970).

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 256

Physical modeling

The physical data modeling was derived from the specific elements of the logical model that
directly influence the system’s development and efficiency without modifying its essential functionalities.
This model described how the data is actually structured.

This structuring involves defining the DBMS to be used in the project, identifying the attributes
of the entities relevant to the business logic of the application or system, culminating in the creation
of tables (entities), columns (attributes), and their respective primary keys and foreign keys. This is
essential to establish the relationships between entities.

Intermediary Infrastructure

The application’s intermediate infrastructure was developed using the R programming language
in the RStudio environment. We chose R because it is open source, has an active community, graphical
capabilities, and is effective in computational analyses. It acts as communication between the backend
and frontend of the software.

The workflow was integrated with the Golem package (FAY et al., 2023), facilitating the rapid
and robust development of the application. The toolkit simplifies the creation, development, and deploy-
ment of Shiny applications, with results showing the final structure and discussing its advantages and
disadvantages.

Frontend

The application’s frontend was built with the R Shiny framework (CHANG et al., 2022) using
Shiny Modules to divide the application into independent parts. We used the shinydashboard package
for the interface and followed Shiny’s reactivity paradigm, prioritizing which outputs should be updated
when an input is triggered. This includes reactive values, reactive expressions, and observers.

Results and discussion

Backend

For the backend development of the proposed software applied to aquaculture, a comprehensive
survey of all potentially involved variables in the application’s functional process was necessary, un-
derstanding their inherent relationships to the phenomenon, and pointing out the main attributes of the
entities for backend construction.

This survey aimed to structure the tables according to the business development of the application
in the most appropriate way in terms of database modeling. For the modeling, three main stages were
divided: conceptual modeling, logical modeling, and physical modeling. Below are the results for each
stage of development in this phase of building a robust application.

Conceptual modeling

At this stage, the primary interaction occurs between specialists in the application’s area of in-
terest and project developers. Through interviews with these specialists, the main entities related to the
application’s business logic were identified, as well as the practical needs in the field where the applica-
tion is intended to operate, aiming to contribute to solving specific problems in aquaculture.

For the application of collective feed purchase among farmers in aquaculture, the main entities
identified were: Manufacturer (feed suppliers), Distributor (sellers who distribute feed), Feed (phys-
ical and nutritional characteristics), Fingerling (morphological characteristics and species), Purchase
(purchase orders), Fingerling Purchase (relation between purchase and fingerling type), Feed Purchase
(relation between purchase and feed type), Inventory (quantity of feed stored), Output (total quantity

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 257

withdrawn), Output Feed (quantity of feed withdrawn), and Fingerling Output (quantity of fingerlings
withdrawn).

In the survey of the main entities for the database, we also included: Telephone (registers mobile
phone numbers), Address (registers addresses), Owner (registers owners), and Farm (registers farms of
the respective owners).

Logical modeling

The logical model represents graphical information requirements from conceptual model data
descriptions. While simplifying conceptual modeling for greater flexibility and clarity, the lack of context
can make tables difficult to interpret, confusing developers during the transition from modeling to data
system deployment.

In this database modeling, the results clarify the entities essential to the functioning of the ap-
plication, defining their relationships to build the backend efficiently and securely. All stages of de-
velopment have been documented to guide future developers. In this phase of database modeling, the
relationships between the entities identified in the conceptual model (Figure 2) and the discussion about
the backend structure for optimization are highlighted. In Figure 2, it is clear that the entities Feed and
Fingerling are related to the Distributor which, in turn, relates to the Manufacturer.

Feed and fingerlings must be registered in the system, with data such as addresses, telephone
numbers, and owners. The Manufacturer, Distributor, Farm, and Owner entities are linked to the Address
and Phone tables. Initially, Address and Phone were considered attributes of these entities, but due to
data duplication and possible multiple phone numbers per owner or vendor, they are treated as separate
entities to ensure the robustness of the system as data grows.

In the system, the registered feeds provide information on physical, chemical, nutritional char-
acteristics, suppliers and, local manufacturers. They are purchased in large quantities for distribution
to local fish farms, reducing logistics costs. Records of feed entry and exit are necessary for tracking,
generating the Purchase and Exit entities, related to Feed, Fingerlings, Farm and Stock.

Based on the table normalization technique, the Purchase and Output entities were derived into
two relational entities (Purchase-Feed and Output-Feed), to reduce their relational cardinalities (N:N),
improving the efficiency of information requests (query) between the intermediate program and the back-
end. These intermediate tables facilitate the exchange of information between R and the backend and
minimize domain conflicts.

Physical modeling

The graphical representation of logical data modeling was used to build the database, outlining
segments relevant to reality based on the requirements consolidated by previous models. During the
data modeling process, the elements were designed at schematic levels, defined by sets that relate to the
database structure (Figure 2).

Based on the Relational Database Management System (RDBMS), the SQL programming lan-
guage was determined for this project, as well as PostgreSQL, which was chosen as the relational
database management system, which used tables and columns from the logical modeling to structure
the database. Recognized for its open source nature, PostgreSQL stands out for its affordability, flexibil-
ity in text indexing, comprehensive technical support and efficient code maintenance, as well as natively
providing access to large volumes of data.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 258

Figure 2: Relational structure defined in the logical modeling of the database for the construction of
collective feed purchase software applied in aquaculture.

Source: from the authors (2024).

The types of data to be used were carefully considered, ensuring adequate protection for the
storage of data and the operations that will be carried out on it. In this context of complex data systems,
the selection of this platform for data storage was of fundamental importance for the development of the
web application that required such reliability attributes, as is the case with PostgreSQL.

The attributes outlined the specific characteristics of each entity proposed in the project, such as
the Manufacturer entity, which specifies the name of the manufacturer (Varchar 20), the type of product
manufactured (Varchar 15), the foreign key to the address ID (Foreign Key - FK), the foreign key for
the phone ID (Foreign Key - FK) and the primary key for the manufacturer ID (Primary Key - PK). The
Distributor entity describes the distributor ID (PK), the distributor name (Varchar 20), the foreign key to
the phone ID (FK), the foreign key to the address ID (FK), the type of product distributed (Varchar 15)
and the foreign key to the manufacturer ID (FK). The Feed entity details the feed ID (PK), the name of
the feed desired by the buyer (Varchar 20), the size of the feed pellet (Integer), the type of feed desired
considering the animal’s phase (Varchar 20), the Manufacturer ID (PK), the percentage of feed protein
(Real), the minimum ether extract in g/Kg (Real), the maximum moisture presented in percentage (Real),
the maximum amount in g/Kg of minerals, fiber and calcium, with all attribute values ??defined as Real,
in addition to the minimum quantities established for calcium, phosphorus and vitamin C in g/Kg, with
values ?? defined as Real.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 259

Additionally, there are other entities with distinct attributes, such as the Fry entity, which in-
cludes the following attributes: Fry ID (PK), Manufacturer ID (FK), Fry Production (Varchar 20), Fry
Nickname (i.e. the popular name of the fish), (Varchar 20) and the sex of the desired fry (Varchar 10).
The Purchase entity has attributes such as purchase ID (PK), quantity of selected items (Integer), total
quantity purchased in kg of feed or thousands of fingerlings (Numeric), total purchase value (Numeric),
date and time of purchase (Date), date and time of arrival of the purchased product (Date) and the type of
purchase, whether feed or fry (Varchar 10). The Fry Purchase entity has attributes such as fry purchase ID
(PK), purchase ID (FK), fry ID (FK), supplier ID (FK), distributor ID (FK), unit value of the millet sold
by the manufacturer (Numeric), quantity per million of specific fry sold (Real), entry value (Numeric),
average weight of individuals in grams during the purchase of fry (Real), days of life of individuals at
the time of purchase (Date) and the code corresponding to the purchased batch and the manufacturer’s
code for identification (Varchar 30).

The attributes of the Feed Purchase entity are: feed purchase ID (PK), purchase ID (FK), feed
ID (FK), supplier ID (FK), distributor ID (FK), unit value in reais per kg of feed (Numeric), purchased
quantity of the specific feed (Real), input value of the specific feed (Numeric), feed storage expiration
date (Varchar 10) and batch and manufacturer code for identification of the feed properties together to
the manufacturer (Varchar 30). The attributes of the Stock entity are: stock ID (PK), product available in
stock (Varchar 15), feed ID (FK), quantity of feed that entered (Integer), monetary value of the feed that
entered (Float), quantity of feed left in stock (Integer), monetary value of feed left in stock (Float), total
amount of feed in stock (Integer) and monetary value of feed in stock (Float).

The attributes of the Output entity are: output ID (PK), quantity of items that came out (Integer),
total quantity that came out in kg of feed or millet of fingerlings (Numeric), total monetary value that
came out (Numeric), date and time the fry or feed left stock (Date), product that left stock, fry or feed
(Varchar 10) and farm ID (FK). The attributes of the Feed Output entity are: ID of feed output (PK),
quantity of feed in kg or in the future tons that left stock (Real), total value that left stock for the farm
(Numeric), ID of feed purchase (FK), farm ID (FK), feed ID (FK), output ID (FK), date and time of
feed leaving stock for the farm (Timestamp) and the batch and manufacturer identification code (Varchar
30). The Fry Output entity also has attributes such as: fry exit ID (PK), quantity of fry per number
of fingerlings that left the stock (Integer), total value of fingerlings per number of fingerlings that left
the stock for the farm (Numeric), Farm ID (FK), date and time of fry departure from stock to the farm
(Timestamp) and fry purchase ID (FK), batch and manufacturer identification code (Varchar 30) and exit
ID (FK).

Entities related to users’ personal data also have attributes. The Phone entity includes attributes
such as Phone ID (PK), Phone Number (Varchar 15) and the WhatsApp (Integer). The attributes of
the Owner entity are: owner ID (PK), owner’s full name (Varchar 40), phone ID (FK) and owner’s CPF
(Varchar 11). The attributes of the Address entity are: address ID (PK), street (Varchar 40), neighborhood
(Varchar 30), city (Varchar 30), state (Varchar 30), address number (Varchar 10), zip code of the street
address (Varchar 15) and reference point to assist with delivery (Text). The attributes of the Farm entity
are: farm ID (PK), farm name (Varchar 40), address ID (FK), farm CNPJ (Varchar 14), telephone ID
(FK), number of tanks registered on the farm (Integer), species produced on the farm (Varchar 20),
owner ID (FK) and farm production system (Varchar 20).

The entities, that is, the tables that make up the database, were structured based on the attributes
mentioned previously. This structuring was represented visually through a diagram, as exemplified in
Figure 3. In addition to the arrangement of entities and their attributes, the diagram also included the re-
lationships established between these entities, indicating the connections and interactions between them
and other tables in the system.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 260

Figure 3: Representative diagram of the relational structure of the database, highlighting attributes and
entities, elaborated during the physical modeling phase for the development of the collective feed pur-
chase software for aquaculture.

Source: from the authors (2024).

Intermediary infrastructure

Golem’s structure organizes the application into folders and metadata, similar to the development
of R packages, which benefits programmers familiar with the language. Each directory has a specific
purpose, aiming at efficiency in software development (Figure 4).

The application follows a structure organized into different directories. In the "dev" folder, there
are the scripts recommended by the Golem workflow, which are essential for the development of the
application within an R package “01_star. R” starts the project and establishes the basic settings. The
“02_dev. R” contains the main code for the Shiny app, while the “03_deploy. R” is used for deployment
configurations. The “run_dev. R” allows local execution of the application during development.

In the "inst" directory, there is the "golem-config.yml" file, which contains metadata such as the
application’s name, version, and working directory. Based on YAML, it is used for metadata serialization.
In the "app/www" subfolder, external resources such as images, CSS, JavaScript, and text fonts are
stored, as well as important files such as report templates and Markdown. The "www" directory is
accessible via the browser while the application is running, not via R.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 261

Figure 4: Structure of the organization of the application based on the Golem template. (A) Directory
structures in the development of the feed purchase application applied to aquaculture. (B) Modules in
Shiny that make up the application.

Source: from the authors (2024).

The "man" folder is reserved for package documentation, usually generated by the roxygen2
package. This documentation provides detailed information about all functions created in the applica-
tion, including inputs, outputs, parameters, and purposes, guiding developers and future contributors in
understanding the structure and functionality of the code for efficient production and future updates.

In the "R" directory are all the functions of the application, following the standard of the R
language for package development. These files contain Shiny modules and other functions that make up
the business logic. Some modules created make connections with the database described in Table 1, for
these connections requests for table data are made, for example, for the registration of feed and/or fry.

The “SQL” directory contains intermediary commands between R and the backend, performing
CRUD operations on a PostgreSQL database.

In the main directory are crucial files: “Rbuildignore” excludes items in version control, “DE-
SCRIPTION” contains metadata, “NAMESPACE” stores data for selective loading, “LICENSE” has the
licensing terms, and “README” offers installation and usage instructions.

The Golem framework was chosen for its standardization in the organization of scripts and files,
integration with packages to speed up development, facilitation of code documentation, and sharing
between projects and collaborators. In addition, it automatically generates the files needed for building
the user interface and server, simplifying Shiny app development.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 262

Table 1: Modules connecting to the database.

Module Name Module Description Database Connection Type
Mod_TabAle_est Updates the status of fry purchases

in the database and refreshes the ta-
ble in the frontend.

dbExecute, dbGetQuery, dbDis-
connect

mod_tabAlevino Performs operations for deleting
and inserting fry data, and updates
the frontend.

dbExecute, dbSendQuery, dbDis-
connect, dbClearResult

mod_tabCompAle Inserts supplier data into the
database and removes temporary
tables after insertion.

dbSendQuery, dbClearResult,
dbGetQuery, dbRemoveTable,
dbDisconnect

mod_tabCompRac Inserts and manages data related to
feed purchases in the database, up-
dates stock, and performs queries.

dbWriteTable, dbSendQuery, db-
ClearResult, dbGetQuery, dbRe-
moveTable, dbDisconnect

mod_tabProprietario Manages owner data in the
database: deleting, inserting, and
updating records.

dbExecute, dbSendQuery, db-
ClearResult, dbGetQuery, dbDis-
connect

mod_tabFazenda Manages farm data in the database:
inserting, updating, and reading
records.

dbSendQuery, dbClearResult,
dbGetQuery, dbDisconnect

mod_tabRac_est Updates arrival and purchase status
data in the database and manages
the feed stock visualization.

dbExecute, dbGetQuery, dbDis-
connect, glue::glue, read_sql_file,
data.frame

mod_tabRacao Manages data related to feed:
deleting, inserting, editing, and up-
dating records in the database.

dbExecute, dbSendQuery, db-
ClearResult, dbGetQuery, dbDis-
connect, glue::glue

mod_tabSaidaAle Inserts, deletes, and queries data
from the fry output table.

Connection to PostgreSQL
via DBI::dbWriteTable,
DBI::dbSendQuery,
DBI::dbGetQuery,
DBI::dbExecute, and
DBI::dbDisconnect

mod_tabSaidaRac Inserts, queries, and deletes data
from the feed output table.

Connection to PostgreSQL
via DBI::dbWriteTable,
DBI::dbSendQuery,
DBI::dbGetQuery,
DBI::dbExecute,
DBI::dbRemoveTable,
DBI::dbClearResult, and
DBI::dbDisconnect

Source: from the authors (2024).

Frontend

The frontend was built with the Shiny framework, with modularization to divide the system into
smaller, autonomous units. The interface is built with shinydashboard. The sidebar contains five menus:
Home, Inventory, Registration, Purchasing, and Output, as shown in Figure 5. Each menu is fragmented
into modules, such as “mod_tabInicio”, “mod_tabEstoque” and so on.

The Home menu summarizes the general information, while the Inventory menu shows the quan-
tity, granulometry, shelf life, and batch of the feed. In the Registration menu, the submenus "Sup-

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 263

Figure 5: Presentation of the Application Interface. (A) Home Menu, with overview. (B) Inventory
menu. (C) and (D) Registration Menu with the submenus Supplier and Feed, respectively. (E) Purchase
menu, Feed submenu. (F) Output menu, Feed submenu.

Source: from the authors (2024).

plier", "Feed", "Fingerling" and "Farm" have specific modules (mod_tabFornecedor, mod_tabRacao,
mod_tabAlevino and mod_tabFazenda) for registration and data editing. In the Purchasing menu, the
"Feed" and "Fingerlings" (mod_tabCompRac and mod_tabCompAle) submenus allow collective pur-
chases to reduce costs. In the Output menu, the "Feed" and "Fingerlings" submenus (mod_tabSaidaRac
and mod_tabSaidaAle) manage the distribution of orders between farms.

The use of Shiny Modules, such as “mod_tabAlevino” and “mod_tabRacao”, fragments the code
into independent components to facilitate collaborative development. This simplifies the organization of
files, making the code more readable and efficient.

The UI (User interface) has an intuitive aesthetic, with side menus. Shiny server programming
follows Shiny’s reactivity paradigm, which establishes a dependency graph to automatically manage up-
dates between inputs (frontend) and outputs (server). This approach ensures a consistent and responsive
user experience, as outputs are automatically updated to reflect changes in inputs (WICKHAM, 2021).

Conclusions

The integration between the backend, which establishes the connection with the database through
the “db_connect” function, and the Shiny modules, which perform queries to the database through
queries to request specific data, together with the Golem framework, is essential for the effectiveness
and success of the application developed for the management of collective feed purchases in aquacul-
ture. The descriptions and database connections of the modules are detailed in Table 1.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

Siqueira et al. (2024) 264

The PostgreSQL DBMS plays a central role in ensuring the integrity, security, and efficiency in
handling application data. By adopting PostgreSQL, a robust and open-source solution, the project gains
in reliability and scalability, which are key to handling the growing demands of the application.

Shiny modules offer a modular approach to frontend development, which makes it easy to orga-
nize, maintain, and scale the application. By breaking down the app into smaller, independent compo-
nents, Shiny modules make the code more readable, making it easier for team members to develop and
collaborate.

Finally, the Golem framework provides a standardized and cohesive organization of the appli-
cation’s source code. By following the standards set by Golem, the project benefits from a clear and
easy-to-understand architecture, which is essential for the maintenance and ongoing development of the
application over time.

Together, the integration between the backend, Shiny modules and the Golem framework allow
the Shiny application to meet the complex demands of managing collective feed purchases in aquaculture,
offering a robust, scalable and easy-to-maintain solution for fish farming producers.

References

BATISTA, B. D. O.; OLIVEIRA, A. B. J. R básico. Ouro Branco, MG: [s.n.], 2022. v. 1. (Estudando o
Ambiente R, v. 1). ISBN 978-65-00-51600-5.

CHANG, W. et al. Shiny: Web Application Framework for R. [S.l.], 2022. R package version 1.7.4.

CODD, E. F. Further normalization of the data base relational model. Data base systems, v. 6, p. 33–64,
1970.

COSTA, H. A. X.; RESENDE, A. M. d.; SILVEIRA, F. F. Relato de experiência de ensino de
modelagem e implementação de software em um curso de graduação em ciências da computação.
Fórum de Educação em Engenharia de Software, p. 46, 2008.

FAY, C. et al. Goelm: A Framework for Robust Shiny Applications. [S.l.], 2023. R package version 0.4.0.

RDEVELOPMENT, C. R: A language and environment for statistical computing. R Foundation for
Statistical Computing Team, 2011.

WICKHAM, H. Mastering shiny. [S.l.]: O’Reilly Media, Inc., 2021.

Sigmae, Alfenas, v.13, n.4, p. 253-264. 2024.
68ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras)

