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Abstract: This  article  aims to  present  an application of  Choice-Based Conjoint  Analysis  (CBCA) with additional 
inferences for the Choice Probabilities of each treatment and for the Choice Ratios, made through their empirical 
distributions obtained via bootstrap. This study involved three attributes and eight treatments (light strawberry-flavored 
yogurt) in a full factorial design. By accessing the empirical distribution of the probabilities and choice ratios, it was  
possible to make inferences about such quantities, something that is not trivial in the frequentist context. Additionally,  
bias and standard error values were obtained for the Choice Probabilities and Choice Ratios, making it possible to 
assess the precision of these estimates, build confidence intervals, and conduct statistical comparisons on these. 
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Introduction

The Choice-Based Conjoint analysis (CBCA) originated from the studies of Louviere and 
Woodworth  (1983),  who  combined  the  experimental  concepts  of  traditional  conjoint  Analysis 
(LUCE & TUKEY, 1964) with the econometric models of discrete choice, more specifically, the 
Multinomial Logit model, initially derived by Luce (1959) and entirely specified by McFadden 
(1974). Afterward, in marketing – the field that predominantly uses it - other research studies were 
developed  (KAMAKURA  &  SRIVASTAVA  (1984),  JOHNSON  &  OLBERTS  (1991), 
KOELEMEIJER & OPPEWAL (1999), MOORE, LOUVIRE & VERMA (1999)), which disclosed 
and consolidated this methodology. 

More  specifically,  the  CBCA  model  use  the  choice  of  the  individuals  (or  dependent 
variables) like a aproximation for the utility (benefit or satisfaction) assigned to a given treatment 
(product, service, and concept). The multinomial logit model divides this utility into partial utilities 
(independent variables) (MCFADDEN, 1974). Later, the parameters for this model are estimated 
and  used  to  calculate  the  probabilities  of  choice  within  the  set  of  treatments.  Interpreting  the 
estimated  parameters  is  not  trivial  because  the  model  employed in  the  treatment  is  not  linear. 
Therefore, a significant result is the Ratio of Choice for each attribute, which shows how likely it is 
to choose a given attribute over the others (GREENE, 2017).

Additionally,  beyond  its  traditional  applications  in  marketing,  CBCA has  found  use  in 
various  fields  of  knowledge,  particularly  in  food  technology.  This  methodology  has  evaluated 
consumer preferences towards new food products and product labels, and it is a more realistic and 
practical approach when it comes to real purchase scenarios because the consumer does not need to  
assign a rating to each treatment, which is far less tiresome (MOORE, 2004). The reader may check 
some of these applications in Lockshin et al. (2006), Della Lucia et al. (2010), Deliza et al. (2010), 
Tempesta et al. (2010), Szücs et al. (2014) and Meyerding (2016). 
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Nevertheless, several researchers still adopt the Ratings-Based Conjoint Analysis (RBCA) 
to evaluate consumer preferences under the premise that this is the most informative approach since 
a  set  of  ratings  provides  more  information  than  a  single  choice  (MOORE,  GRAY-LEE,  & 
LOUVIERE (1998), KARNIOUCHINA et al., (2009) AND ASIOLI et al., (2016)). In this sense, to 
try  to  make  CBCA  popular  and  improve  the  preference  structure  modeling,  other  frequentist 
approaches  were  proposed,  such  as  the  Dogit  Multinomial  model  (GAUDRY & DAGENAIS, 
1979), which allows the grouping of individuals who have made the same decision (individuals 
whose preference is independent of the treatments), and the Logit Sequential model (MCFADDEN, 
1978), which makes possible for individuals to make decisions or choices hierarchically. Moreover, 
the  latent  class  models  (DESARBO,  RAMASWAMY,  &  COHEN,  1995)  and  the  Adjusted 
Heterogenous  Logit  Model  (CHESHER & SANTOS SILVA,  2002)  allow one  to  evaluate  the 
influence of heterogeneity on the individuals’ choices.

However, in none of these methods is it possible to infer about the probability of the choice 
alternatives  or  about  the  Ratio  of  Choice,  that  is,  testing  hypotheses  or  making  statistical  
comparisons about such amounts, given that only their punctual estimations are known. Hence, the 
absence  of  such  inferences,  besides  making  CBCA less  informative,  may  result  in  misleading 
conclusions since one must assess the variability of their respective estimators. More specifically, 
one may consider, wrongly, choice alternatives with equal statistically probabilities like different, 
only analysing the single-point estimations. Naturally, if the cost of each of these treatments is 
relatively different, a mistaken decision may cause unnecessary expenses to the manager.

Therefore, this work proposes applying the bootstrap method (EFRON, 1979) to CBCA. In 
addition to the traditional analysis, this approach will make it  possible to explore the empirical  
distribution of  the probabilities  /  Ratio of  Choice and infer  about  such amounts,  which by the 
frequentist approach is a very difficult task. To do so, the data used in this study come from an 
actual  experiment  (DELLA  LUCIA  et  al.,  2010)  conducted  with  144  individuals  and  eight 
treatments.

Material and methods

Analyzed experimental data

This study comprised  N =  144 individuals residing in the city of Viçosa (Minas Gerais, 
Brazil) and  R = 3 attributes: information on sugar content (“Sugar”), information on Fat content 
(“Fat”) and information on Protein content (“Protein”) at the following levels: sugar (“0% sugar” 
and “with sweetener”), fat (“0% fat” and “low-fat”) and protein (“enriched with whey protein” and 
“enriched with bioactive proteins”). The complete factorial design was employed in this study, with 
J = 8 treatments, as displayed in Table 1. Della Lucia et al. (2010) provides additional details on 
the experiment's methodology. 
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Table 1: Design of the treatments under study.

Treatment Sugar Fat Protein
1 0% sugar 0% fat Whey protein
2 Sweetener 0% fat Whey protein
3 0% sugar Low-fat Whey protein
4 Sweetener Low-fat Whey protein
5 0% sugar 0% fat Bioactive proteins
6 Sweetener 0% fat Bioactive proteins
7 0% sugar Low-fat Bioactive proteins
8 Sweetener Low-fat Bioactive proteins

Source: from the authors (2024).

Choice-Based Conjoint Analysis (CBCA)

In CBCA, Equation (1) defines the model for random utility. 

U=Xβ+ε ,(1)
in which:

● U=(U 11…U 1JU 21…U 2 J…U N 1…U NJ )
' is the vector (NJx 1) of the random utilities (latente 

or not measured variables) associated with J treatments, as assigned by the N individuals. 
● X=[X1 X 2…X N ]' in  which  X1=X 2=…=X N are matrices  or  submatrices  of  X  with 

dimensions  (J  x  R)  that  specify  the  coding of  the  sth level  of  the  rth attribute  in  the  jth 

treatment. For n=1 ,2 ,…,N  we have: 

X n=[X11 X 21…X R
1 X1

2 X 2
2…X R

2 ⋮⋮…⋮ X1
J X 2

J…X R
J ]

● β=(β1 β2…βR)
' is  the  vector  of  unknown  parameters  (or  preference  coefficients)  with 

dimensions (R x 1), in which βrrepresents the effect of the rth attribute on the mean random 
utility. 

● ε=(ε11…ε1J ε21…ε2 J…εN 1…εNJ )
' is the vector (NJ x 1) of random, non-observable errors in 

the  model,  supposing that  each  εnj is  independent,  has  a  distribution  of  extreme type  I 

values,  or  Gumbel,  with  a  null  mean and constant  variance  of   
π2

6
,  constrain  which is 

defined so the model may be identifiable1 (TRAIN, 2009). 
Model  (2)  or  Multinomial  Logit  (MCFADDEN, 1974) is  derived supposing that  the  nth 

individual will choose the jth treatment, if, and only if, U nj>U nk, ∀ j ≠ k ; j , k∈ {1 ,2 ,…, J }. Therefore: 

P (X )= eX j β

∑
k=1

J

eX k β ,(2)

1 A model is considered globally identifiable if there is a maximum value for likelihood for a single set of estimations. 
Otherwise, restrictions should be imposed on specific parameters so the model may become identifiable. 
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where,  the  probability  P (X ) represents  the  probability  of  the  nth individual  choosing  the jth 

treatment. Because the matrix  X is the same for  n=1 ,2 ,…,N ,  P (X )=P (X ) (this occurs because 
the  probability  estimates  for  each  treatment  are  considered  approximately  the  same  for  all  
individuals in the sample, since the preference or taste of individuals is treated as homogeneous in 
this methodology). The parameter estimators of the model (2) are obtained by maximum likelihood,  
maximizing the natural log of  L (β ) in (3), that is,  l (β )=ln [L (β ) ], through the Netwon-Raphson 
method (GALLANT, 2009). 

l (β )=ln[∏j=1
J

( eX j β

∑
k=1

J

eX k β ,(3 ))
❑]

in which,  nj is the variable that shows the number of times that the jth treatment was chosen. The 
contribution or effect of the levels of each attribute on the choice of individuals is assessed by the 
Choice Ratio (GREENE, 2017), a measure defined by the ratio between two distinct probabilities, 
as shown in (4)

R Er (X p , X q)=
P (X )
P (X )

=e(X r
p−X r

q) βr ,∀ r=1 ,…,R(4 )

in which treatment q is obtained from treatment p, fixating (r – 1) levels of r atributes or altering the 
level of a single characteristic only. Therefore, it is possible to interpret that if: 

{ℜ >1⟹P (X )>P (X ) ℜ =1⟹P (X )=P (X ) ℜ <1⟹P (X )<P (X )

Note that  C=(m2) Ratios of Choice will be estimated for an attribute with m≥2 levels, in 
which (.) indicates a simple combination. We also point out that RE is constant and depends solely 
on the characteristics of treatments p and q. Hence, removing or including other treatments does not 
alter its proportionality, which is particular to the Multinomial Logit Model, denominated by I.I.A. 
(Independence  of  Irrelevant  Alternatives)  and  ensured  by  the  independence  of  random  errors 
(TRAIN, 2009).

Basic principles of Non-parametric Bootstrap

Consider y=( y1 y2… yn)
'
 as the set of observed values which represents a realization of the 

random variable Y=(Y 1Y 2…Y n)
'
, arising from a population with unknown distribution and indexed 

by parameter θ, that is, F ( y ,θ ). For simplicity, adopt θ as a scalar, although it can be represented as 
a vector. Admit the interest in knowing the sample distribution of statistics θ❑ t ( y ), used to estimate 
θ=t (Y ). After applying the Bootstrap method, with repositioning,  K new data sets are obtained: 
yk=( y1 y2… yn),  with  k=1 ,2 ,…, K .  If  for  each  kth bootstrap re-sample or  replica  the statistics 

θ❑ t ( y ) is  estimated,  that  is,  θk
❑=t ( yk

) ,  then  the  Bootstrap  distribution  of  θ❑ or  the  empirical 
distribution of  θ❑ can be accessed.  This  distribution is  considered an estimation of  the sample 
distribution of  θ❑ (FOX & WEISBERG, 2011). Therefore, histograms, position, and dispersion 
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measurements can be used to explore it, while confidence intervals and hypothesis tests can be 
elaborated  or  run  to  assess  parameter  θ.  In  general,  the  primary  calculated  measurements  are 
Bootstrap mean (5), variance (6), mean standard deviation (7), and bias (8): 

θB
❑=θ❑=E❑

Var❑

EP❑

B❑

There are several Bootstrap confidence intervals. The reader may check for further details in 
Efron  and  Tibshirani  (1993)  and  Chernick  and  LaBudde  (2014).  In  this  work,  we  have  only 
employed the Percentile Bootstrap interval, which uses the empirical quantiles of the distribution θ❑ 
to obtain the respective upper and lower limits. Therefore, let us consider that each θ(1)

❑ θ(2)
❑ …,θ(K )

❑
, 

so that  θ(1)
❑ θ(2)

❑ ?<…<θ(K )
❑

,  represents the kth statistics of the order of distribution  θ❑.  Hence, the 
interval  with  100 (1−α )% of  confidence for  parameter  θ is  defined as  shown in (9)  (EFRON, 
1981): 

I C (1−α ) (θ )=¿

in which L=⌊ (K+1)α
2

⌋ , U=⌊ (K+1)(1− α
2 ) ⌋  and ⌊ x ⌋  represents the highest whole number less 

than or equal to x. 

Paired Bootstrap Method in CBCA

Assume  the  y=( y11… y1J y21… y2 J… yN 1… yNJ )
'
represents  the  vector  comprised  by  NJ 

response variables (dependent variables) or observed choices (1 if the jth treatment was choose for 
the  nth individual and 0 if not) and that  X n

j=[X1j X 2j…X R
j ] represents the line vector in the design 

matrix X, referring to the nth individual and consisting of the coding of the levels in the jth treatment. 
In the Paired Bootstrap method, resampling occurs in pairs  (X nj

❑; ynj
❑), and each of these pairs is 

considered to have come from a conjoint distribution or a bivariate probability distribution (X; Y). 
This  approach  is  also  known  as  Random-X  Resampling  or  Cases  Resampling  (DAVISON  & 
HINKLEY, 1997). The used algorithm is defined as follows (EFRON & TIBSHIRANI, 1993):

i. Randomly select with replacement the NJ pairs of values (X nj
❑; ynj

❑) for n=1 ,2 ,…,Nand 
j=1 ,2 ,…, J , which will compose the first Bootstrap replica, according to the following 
rule; 

{X nj
❑=X n

j ynj
❑= ynj

ii. Adjust the Multinomial Logit Model to the dataset obtained from step i., estimate its 
parameters, the treatment probabilities, and the Ratios of Choice of each attribute, as 
mentioned in section 2.2; 

iii. Repeat steps i. and ii.  K times to obtain the empirical distribution or Bootstrap of the 
statistics of interest. 
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Computational Aspects

In our statistical analyses, we leveraged the capabilities of the open-source R software (R 
CORE TEAM, 2017). The parameters of the Multinomial Logit Model were estimated using the 
clogit function from the survival package (THERNEAU, 2012). The treatment designs were crafted 
using the expand.grid and caEncodedDesign functions available in the Conjoint package (BAK & 
BARTLOMOWICZ, 2012). The Paired Boostrap was executed using the  boot function from the 
boot package  (DAVISON  &  HINKLEY,  1997).  For  deriving  Bootstrap  percentile  confidence 
intervals, the boot.ci function from the same package was employed, utilizing the perc argument. 

The Shapiro and Wilk test (1965) was applied with a significance level set at 5% probability 
to evaluate hypotheses of normality on the empirical distributions of the treatment Probabilities and 
the Ratios of Choice for the attributes.

Results and discussion

In  Table  2  are  the  estimations  of  mean,  bias,  and Bootstrap  standard  deviation  for  the 
parameters  of  the  CBCA model.  We used a  total  of  K =  1999 replicas  to  build  the  empirical 
distribution of each estimator. 

Table 2: Estimations and statistics1 provided by the Paired Bootstrap method.

Attribute βB BS  (β̂*) ÊP( β̂)*

Sugar -1.6759 -0.0156 0.2181 (0.2274)

Protein 1.5241 0.0115 0.2061 (0.2166)

Fat -0.7918 -0.0033 0.1602 (0.1797)

Source: from the authors (2024).
Legend: Values in parentheses represent classical standard error estimates.

Note that the estimations for mean Bootstrap showed low bias and standard error, which is  
desirable because it demonstrates that we can use this measurement as an estimator for the effect of 
the attributes under study. Della Lúcia et al. (2010) found similar results when running CBCA on 
the  same  data  when  estimating  the  parameters  of  the  Multinomial  Logit  model  by  Maximum 
Likelihood (ML).  The bootstrap method provided standard error  estimations  quite  close  to  the 
traditional ones; however, for non-linear models, the proposed approach is the most adequate to 
quantify the uncertainty of the estimations, given that the linear approximations (Delta Method), 
traditionally used, may be inadequate at the presence of outliers, significant dispersion of data or  
small samples. 

In Table 3 are the Percentile Bootstrap intervals for the parameters of the CBCA model. In 
this Table, β(50 )

❑ e β(1950 )
❑

represent the order statistics of the empirical distribution of each β❑, which 
accumulate 2.5% and 97.5% of probability, respectively. We also presented the traditional 95% 
confidence interval based on the Standard Normal distribution and determined the amplitude of 
these intervals (A) as a comparison criterion.

1 In which ^B, B^^ and EP^^ represent the estimations for mean, bias, and standard error Bootstrap, respectively.
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Table 3: Intervals based on the Standard Normal distribution and Percentile Bootstrap intervals.

Percentile Bootstrap Standard Normal
Attributes ^β(50 )* β(1950 )* A L U A

Sugar -2.1377 -1.2833
0.854

4 -2.1061 -1.2144 0.8917

Protein 1.1514 1.9836
0.832

2 1.0879 1.9372 0.8492

Fat -1.1108 -0.4875
0.623

3 -1.1408 -0.4360 0.7047

Source: from the authors (2024). 

With  the  Percentile  Bootstrap  confidence  intervals,  it  is  possible  to  infer  the  statistical 
significance of the Sugar, Protein, and Fat attributes. We assess whether the zero value belongs to 
the respective intervals to obtain this decision. This result coincides with the one found by Della  
Lúcia et al. (2010) via the Wald test (1943), where its nullity statistical hypothesis (H 0 : β=0) was 
rejected at 5% probability for all three attributes under study. So, it is possible to conclude that the 
sugar, protein, and fat content information presented in the light strawberry yogurt labels influences 
consumers’ choices. 

It is also possible to observe that the Percentile Bootstrap interval provided an amplitude 
very close to the traditional interval. We expected this, given that the sample distribution of the 
estimator of Maximum Likelihood converges asymptotically towards a normal distribution, that is, Np^−dN0,−H−1  in  which  H and (-H)  represent  the  expected Hessian matrix  and the  expected 
Fisher information matrix,  respectively (TRAIN, 2009). Therefore, it  is hope that the empirical 
distributions behave likewise. However, the Shapiro-Wilk test rejected the hypothesis of normality 
for both Bootstrap distributions (p-value ≈ 0), and for this reason we observed some differences in 
the  range  of  the  percentile  and  normal  intervals.  Figure  1  displays  the  respective  probability 
histograms. The red lines indicate the lower and upper limits of the Percentile Bootstrap intervals, 
and the blue lines represent the interval limits based on the Standard Normal distribution.
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Figure 1: Histogram of the empirical distributions of the estimators of the CBCA model.

 Source: from the authors (2024).

In Table 4 are the estimations for the Probabilities of Choice of the set of treatments under 
analysis and the other statistics provided by the Paired Bootstrap method. 

Table 4: Estimations and Bootstrap statistics for the Probabilities of Choice.

Treatment pB B̂�  EP (p ̂*j) P̂ j (50) P̂ j(1950)
1 0.1043 0.00001 0.0177 0.0687 0.1400

2 0.0199 0.00006 0.0052 0.0109 0.0316

3 0.0475 0.00012 0.0096 0.0295 0.0679

4 0.0091 0.00007 0.0026 0.0047 0.0149

5 0.4731 -0.00024 0.0354 0.4056 0.5421

6 0.0899 -0.00014 0.0165 0.0590 0.1230

7 0.2152 0.00006 0.0253 0.1681 0.2676

8 0.0409 0.00004 0.0087 0.0248 0.0593

Source: from the authors (2024). 
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It is possible to conclude that the highest Probability of Choice (0.4731) is associated with 
treatment 5, with the following characteristics: 0% sugar, 0% fat, and bioactive proteins. On the 
other  hand,  Treatment  4  (with  sweetener,  low-fat  content,  and  whey  protein)  had  the  lowest 
Probability of Choice (0.0091). Della Lucia (2008) obtained the same result with Ratings-Based 
Conjoint Analysis, estimating positive coefficients of preference (which increased preference rate) 
for  the  levels  present  in  treatment  5  and  negative  preference  coefficients  (which  decreased 
preference rates) for the levels present in treatment 4. 

In addition to low bias, the mean Bootstrap estimations for probabilities of choice also meet 
the probabilistic axioms of Kolmogorov (2018), which is fundamentally importance. Furthermore, 
with the Percentile Bootstrap intervals, it is possible to conclude, for example, that the Probability  
of Choice for treatment 5 and treatment 7 are statistically different because the limits of these 
intervals do not overlap. On the other hand, the Probability of Choice for treatment 1 and 6 are 
statistically equal. Note that 26 similar comparisons may still be made two by two. Therefore, in a  
corporate context, these additional inferences offer higher confidence to managers during decision-
making  processes  or  before  investments,  because  the  conclusions  will  not  be  based  solely  on 
mathematical  differences  but  on  probabilistic  information.  Figure  2  displays  the  histogram  of 
probability with the respective empirical distributions. According to the Shapiro-Wilk test, only the 
distribution of the Probability of Choice for treatment 7 is considered approximately normal for 5% 
of signficance (p-value = 0.051).  

Figure 2: Histogram of the empirical distributions of the Probabilities of Choice of treatments.

Source: from the authors (2024).

Sigmae, Alfenas, v. 13, n. 5, p. 23-38, 2024.



Barbosa et al. (2024)                                                                    32

To infer about the effect of levels of each attribute on the consumer’s choice, Table 5 shows  
the Ratio of Choice estimations and the results provided by the Paired Bootstrap method.

Regarding  Sugar  attribute,  the  mean  Bootstrap  estimation  for  the  Ratio  of  Choice 
demonstrates that a treatment with “0% sugar” is 5.5217 times more likely to be chosen over a 
treatment “with sweetener”. As for the Fat attribute, a treatment with “0% fat” is 2.2631 times more 
likely to be chosen over a “low-fat” treatment. Lastly, for the Protein attribute, the treatment with 
“bioactive proteins” is 4.7090 times more likely to be chosen over a treatment with “whey protein”. 

Table 5: Estimations and Bootstrap statistics of the Ratio of Choices for each attribute.

Attribute ℜ̂B B̂ (ℜ̂) ÊP(ℜ̂) ^ℜ(50)
^ℜ (1950)

Sugar 5.5217 0.2608 1.3858 3.5609 8.8897

Fat 2.2631 0.0031 0.3749 1.6515 3.1034

Protein 4.7090 0.1705 1.0252 3.1670 7.2269

Source: from the authors (2024). 

Reis  (2007)  observed,  using  Ratings-Based  Conjoint  Analysis,  that  the  level  “with 
sweetener”  also  harmed  the  consumer’s  preference  rate  as  opposed  to  the  level  “No  sugar”.  
However,  the  interviewed consumers  seem to  prefer  products  with  no  fat.  Della  Lucia  (2010) 
explained that the negative aspect associated with the term “whey protein” may be related to the 
not-so-pleasant sensory characteristics of this level, differently from the term “bioactive proteins”, 
which is associated with a healthier food product, justifying its higher acceptance. 

As observed before, the analysis of the Percentile Bootstrap intervals for the Ratio of Choice 
corroborates  the  statistical  significance  of  the  attributes  since  the  unit  value  is  not  within  the 
respective limits for each interval. In other words, it is as if we tested  H 0 :R Er=1 ∀ r against 
H 1 :R Er≠1 ∀ r, deciding about the rejection of zero hypotheses for r = 1, 2, and 3. In addition, in 
studies in which at least one of the attributes consists of more than two levels, it will be possible to 
evaluate the ratios of choice in each attribute1, given that statistical tests, such as Wald’s (1943), 
traditionally applied in the frequentist  analysis of CBCA, only inform whether the effect of an 
attribute is different from zero or not. 

Figure  3  illustrates  the  probability  histogram  for  the  empirical  distributions  of  these 
numbers. The Shapiro-Wilk test rejected the hypothesis of normality for both Ratios of Choice (p-
value ≈ 0), given that such distributions are asymmetrical to the right. 

1 An attribute with m levels provides m 2 ratios of choice, in which (.) represents a simple combination. Therefore, if m 
= 2, we have a single RE that compares levels  a1,a2 of an attribute A. However, if  m = 3, then RE = 3, because the 
levels of attribute A will be compared 2 by 2, that is, (a1,a2),(a1,a3),(a2,a3).
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Figure 3: Histogram of empirical distributions of Ratios of Choice for each attribute.

Source: From the authors (2024).

Conclusions

In  addition  to  offering  more  precise  punctual  estimations,  the  Paired  Bootstrap  method 
allowed us to assess the empirical distribution of probabilities of choice alternatives and ratios of  
choice and to make statistical inferences about these quantities. Under the frequentist approach, 
similar results are very difficult to obtain, since deriving the standard error of the probability and 
choice ratio estimators or accessing the respective estimators' sample distribution is not a trivial 
task. Hence, it was possible to conclude the superiority and the statistical equivalence between the 
probabilities of choice for specific treatments. This conclusion may help managers determine which 
treatments should receive investment or be removed from the market during commercial decision-
making.
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