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Abstract: The production of apples is a significant segment of the global agricultural industry, of-
ten threatened by diseases and pests. This study investigates the use of convolutional neural networks
(CNNs) to classify images of apple tree leaves, distinguishing between healthy leaves and those affected
by rust and scab. The objective is to develop an approach for the early de- tection of these fungal dis-
eases. High-resolution images were collected, considering variations in lighting, angles, and backgrounds.
Eighteen pre-trained CNN architectures available in Keras were tested and evaluated using metrics such
as accuracy, precision, recall, and F1-score. The EfficientNetV2B2 and DenseNet201 networks showed
the best results, with an accuracy of 99%. To enhance classification performance, ensemble techniques
were explored, including combining all networks and selecting only the most accurate ones. Although
promising, challenges such as computational complexity and the need for real-time processing in practical
applications remain. The findings demonstrate the potential of CNNs and ensemble methods in supporting
early detection of diseases in apple orchards, providing valuable tools for producers to manage infestations
more effectivelys.
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Introduction
The global production of apples is an important segment of the agricultural industry

and plays a fundamental role in food supply and the global economy. According to the Food
and Agriculture Organization of the United Nations (FAO, 2021), the global apple production
in 2021/2022 was 86.5 million tons, with production concentrated in key regions worldwide.
According to AtlasBig (2021), China is the world’s largest apple producer, with an annual
production of about 45 million tons. The country concentrates its production in mountainous
regions of the northwest, such as Shaanxi and Shandong, which offer an ideal climate for fruit
cultivation.

The United States follows with 4.6 million tons; Poland with 3.6 million tons; Turkey
with 2.9 million tons; India with 2.8 million tons; Iran with 2.8 million tons; Italy with 2.5
million tons; Russia with 1.8 million tons; and France with 1.8 million tons. Brazil is the 13th
largest apple producer in the world, with an annual production of about 1 million tons. National
production is concentrated in the southern part of the country, in states such as Santa Catarina,
Rio Grande do Sul, and Paraná.

Apple orchards face significant challenges and suffer millions of dollars in annual losses
due to various biotic and abiotic factors. The continuous management of stress and the multi-
year impacts of fruit tree loss are constant issues for producers. During the growing season,
orchards are constantly threatened by a variety of insects, fungi, bacteria, and viral pathogens.
The incidence and severity of these infections can lead to consequences ranging from unappealing
cosmetic appearances, poor marketability, and low fruit quality, to significant reductions in yield
or even complete loss of fruits or trees, resulting in enormous economic losses (THAPA, 2020).

Additionally, it is important to highlight that incorrect diagnoses can lead to the im-
proper use of chemical products, resulting in either unnecessary or insufficient application. This
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scenario can result in the selection of resistant pathogen strains, which increases production
costs, intensifies environmental and health impacts, and in more severe cases, can even lead
to significant outbreaks. Modern high-density apple orchards, often composed of a few highly
susceptible varieties, are particularly vulnerable to the rapid spread of pathogens. In critical
situations, infestations can quickly spread throughout the orchard, resulting in considerable
losses and, in some cases, even complete destruction of the planting (PEIL, 2009).

The early detection of pests and diseases is a fundamental aspect of efficient orchard and
crop area management. The proper and timely implementation of pest and disease management
programs directly depends on this detection, as early interventions can minimize the negative
impacts caused by these agents on agricultural production. According to Gupta, Slawson e Mof-
fat (2022), early detection of pests and diseases is one of the main strategies for integrated pest
and disease management in agriculture. To achieve this goal, researchers rely on risk prediction
models for diseases and pests. These models are based on detailed information about the inci-
dence, severity, and timing of infections, as well as current and forecasted meteorological data.
In the context of contemporary agriculture, this approach envisions a scenario where farmers
can accurately predict when and where pests and diseases will attack their crops, allowing them
to act quickly and precisely, preventing losses and ensuring abundant and healthy harvests. This
method protects the environment and human health by reducing the use of pesticides.

Technologies in the Field

This reality is becoming possible thanks to the integration of various technologies such
as satellite imagery, unmanned aerial vehicles (UAVs), geostatistics, and artificial intelligence
(AI).

1. Satellite Imagery for a Holistic View: Bitemporal satellite images, combined with
environmental and plant growth data, offer a comprehensive view of crop health. This
technology allows for distinguishing different diseases and pests, enabling more precise
and effective management (MA et al., 2019).

2. Geostatistics for Pest Mapping: Helps to map the spatial distribution of insect pop-
ulations, facilitating the identification of areas at higher risk of infestation. With this
information, pest control efforts can be directed to specific areas, optimizing resource use
and minimizing environmental impact (SCIARRETTA; TREMATERRA, 2014).

3. Aerial Monitoring with UAVs: Equipped with advanced technology, UAVs can fly
over crops, collecting valuable data on agricultural operations. By analyzing this data,
parameters such as flight speed and altitude can be optimized, enhancing pest and disease
control (WANG et al., 2019).

4. The Power of Artificial Intelligence: According to Ludovico et al. (2023), various
models are used for time series forecasting, among which statistical models and those
based on computational intelligence stand out. For example, AI, with its deep learning
algorithms, can analyze images of healthy and diseased plants, accurately identifying the
crops and diseases present (MOHANTY; HUGHES; SALATHE, 2016; ZHANG et al.,
2023). This technology allows for early detection of pests and diseases, enabling immediate
interventions to prevent production losses and ensure high-quality harvests.

Ongoing research explores new AI applications for the rapid and accurate diagnosis of
plant diseases, contributing to more efficient and sustainable agriculture (JUNIOR; SANTOS;
SAFADI, 2019). Machine learning models, such as Convolutional Neural Networks (CNNs) are
trained with large datasets of images to identify diseases in apples with high precision (SILVA,
2021). CNNs are designed for computer vision tasks like pattern recognition in images. They
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are widely used for tasks such as image classification, object detection, semantic segmentation,
and more.

Various studies have explored the potential of CNNs for diagnosing diseases in apple trees.
Mohanty, Hughes e Salathe (2016) proposed a smartphone-assisted diagnostic system based on
CNNs trained on a large dataset of leaf images from various crops, including apple trees. Fu et
al. (2022) developed a model called AlexNet to classify leaf diseases in apple trees, demonstrating
high accuracy. Aiming for robustness and efficiency, they proposed lightweight CNNs for apple
disease detection. Wang et al. (2021) introduced enhanced CNNs with attention mechanisms
to improve accuracy and efficiency in identifying various apple diseases. Turkoglu, Hanbay e
Sengur (2019) integrated multi-model CNNs based on LSTM (Long Short-Term Memory) for
the detection of diseases and pests in apples, demonstrating the versatility of neural networks
in agricultural applications. These studies collectively highlight the significant advances made
in using neural networks, especially deep learning models like CNNs, for real-time detection and
diagnosis of diseases in apple trees.

Despite the potential of these algorithms, it is important to highlight the need for a com-
parative analysis to determine which models perform best in specific scenarios. The literature
still lacks a specific comparison for this context. This work aims to fill this gap by conducting
a comprehensive comparison of 18 deep neural networks that demonstrated the best results in
the ImageNet competition (SZEGEDY et al., 2015; HE et al., 2016). The selection of these
models is based on their recognized performance in one of the most renowned and challenging
competitions in the field of computer vision. We hope to provide valuable insights that guide
the choice and implementation of the most effective algorithms for monitoring and controlling
diseases in apple orchards.

Images of Apple Tree Diseases

The collection and annotation of a large number of real, high-quality images by experts
are crucial for training AI models with high precision (SILVA et al., 2020). This includes different
image capture conditions, such as positions and angles of infected tissue, levels of ambient light,
types of sensors, and climatic variations. Additionally, it is important to illustrate the effect
of each disease on fruits and leaves at various stages. The diseases focused on in this work are
Apple Scab and Apple Rust: Apple scab is caused by the fungus Venturia inaequalis. This
disease causes the formation of dark, rough spots on the leaves and fruits of the apple tree.
As the infection progresses, the spots may merge, covering large areas of the leaf surface or
fruit. Besides the undesirable aesthetic aspect, apple scab can lead to premature leaf drop,
impairing tree development and reducing harvest yield (AGROLINK, 2020; CULTIVAR, 2018;
CULTIVAR, 2019).

On the other hand, rust is another common fungal disease that affects apple trees, caused
by fungi of the genus Gymnosporangium. Rust is characterized by the formation of small orange
spots on the underside of the leaves and on the fruits of the tree. Over time, these spots may
become more visible and, in severe cases, can cause deformations in the leaves and premature
leaf drop (TECHINFUS, 2021). In addition to scab and rust, other leaf diseases can affect apple
trees, including mildew, bitter rot, trunk cancer, and gray mold (SILVA et al., 2010).

Pre-trained Neural Networks

Pre-trained CNNs are convolutional neural networks that have been trained on large
datasets for specific tasks, such as image classification into a wide range of categories. These
models are pre-trained on massive datasets, such as ImageNet, which contains millions of labeled
images across various categories. Alsuwat et al. (2022) demonstrated the effectiveness of this
method. These architectures consist of convolutional layers, fully connected layers, and can be
fine-tuned through supervised training, as observed by Hu et al. (2015). The use of pre-trained
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CNNs proves particularly valuable when labeled training data is scarce, enabling performance
enhancement without incurring overfitting, as discussed by Girshick et al. (2014) and Wang et
al. (2017).

These architectures are adaptable for different tasks, either by modifying their struc-
tures or by fine-tuning with new datasets, as evidenced by Tajbakhsh et al. (2016). In other
words, the flexibility in modifying the architectures’ structures allows for specific adjustments
for different contexts and task requirements. These modifications may include adjustments to
hyperparameters, adding additional layers, removing unnecessary layers, or even replacing fun-
damental components. Such adaptability enables the models to be optimized for a diverse range
of machine learning problems, from image classification to object detection or semantic segmen-
tation. Furthermore, their application extends to areas such as remote sensing, medical imaging,
and object detection, leveraging the knowledge gained to optimize performance, as exemplified
by Vishnoi, Kumar e Kumar (2021) and Cheng e Malhi (2016). The central proposition of this
work is to leverage pre-trained neural networks to classify new images; in this case, the input
data would be apple leaf diseases, adjusting the parameters and retraining only the final layers
of the network. Thus, we can use this approach to specifically classify leaf diseases in our images,
focusing on the object of interest: the identification of leaf diseases.

Ensemble Neural Network Combination

In the pursuit of excellence in machine learning, data scientists often resort to a strategy
known as ensemble neural networks. This intelligent approach involves combining multiple
neural networks, each contributing its own perspective and expertise, to produce more robust
and accurate results.

For example, Cruz (2023) proposed an ensemble approach for sentiment analysis of tweets
related to sports concussions, demonstrating the effectiveness of combining different deep neural
network models. Similarly, Opitz e Maclin (1999) emphasized that ensembles consist of indi-
vidually trained classifiers, such as neural networks, whose predictions are combined to classify
new instances, and it was shown that this approach reduces overfitting and increases the overall
model accuracy. Additionally, Lee, Hong e Kim (2009) demonstrated that the generalization
ability of neural network systems can be significantly improved by combining multiple neural
networks into an ensemble. Furthermore, ensemble neural networks have been applied in various
fields. By leveraging the diversity and complementarity of individual models, ensembles have the
potential to enhance the performance and reliability of machine learning systems, thus driving
the frontier of knowledge and innovation.

Materials and Methods

Data Collection

During the 2019 growing season, real and high-quality RGB images—color images that
capture red, green, and blue channels to represent realistic visual details—were captured, en-
compassing various symptoms of apple tree leaf diseases. As described on the competition
website Kaggle (2020), these images were obtained from different commercially grown cultivars
in an unsprayed apple orchard located at Cornell AgriTech in Geneva and New York, USA. The
photos were taken using a Canon Rebel T5i DSLR camera, as well as smartphones, covering a
wide range of lighting conditions, capture angles, scenes, and noise levels. This image collec-
tion procedure was carefully conducted to ensure the representativeness and diversity of disease
symptoms observed on apple tree leaves throughout the growing period. The dataset used in
this research presented complex challenges, which were carefully considered to make the analysis
more comprehensive and representative. These complexities included:
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1. Diverse image backgrounds: The captured images contained different backgrounds, which
could hinder the accurate identification of disease symptoms. Pre-processing strategies
were employed to remove background noise and highlight relevant elements.

2. Variation in capture times: The images were taken at different times of the day, which can
affect lighting conditions and symptom appearance. This requires the use of normalization
techniques and color correction to ensure information consistency.

3. Plant maturity stages: The images included plants at different maturity stages, which can
affect symptom appearance and development. It was necessary to consider these variations
to create robust classification models.

4. Presence of multiple diseases in a single image: Some photos displayed more than one
disease, complicating the task of identification and classification. Multi-label detection
approaches were adopted to deal with this situation.

5. Varied focus settings: The images were taken with different focus settings, which can
impact the sharpness of details. Image enhancement techniques were applied to improve
symptom quality and clarity.

The dataset included diseases such as apple scab, cedar rust, Alternaria leaf spot, and
frog eye leaf spot, along with healthy leaves, all of which were analyzed in detail. The careful
handling of these complexities resulted in a reliable and representative dataset, providing a solid
foundation to advance in the field of automated disease detection and diagnosis in plants.

Class Labeling and Data Splitting for Training and Testing

A Python development environment was set up, including the installation of necessary
libraries for image processing and machine learning, such as TensorFlow and Keras (TENSOR-
FLOW). The data used in this study was obtained from two CSV files available on Kaggle (2020).
These files contained information about each plant image, identifying which disease the image be-
longed to. The four columns present in the files were: ``Healthy'', ``Multiple Diseases'',
``Rust'', and ``Scab''. Additionally, the database also contained the actual images associated
with these classifications. Initially, the images were separated based on the information present
in the CSV files. Each image was associated with one of the four available disease categories:
``Healthy'', ``Multiple Diseases'', ``Rust'', and ``Scab''. Thus, four distinct folders
were created, each containing labeled images according to their respective disease (Figure 1).

An exploratory data analysis was conducted to understand the distribution of samples
in each class. For this, we used the provided quantity values, representing the number of images
in each category. It was discovered that the ``Healthy'', ``Rust'', and ``Scab'' classes have
a significantly larger number of images compared to the ``Multiple Diseases'' class, which
has a substantially smaller representation (Figure 1). This imbalance can lead to problems
during the classification model training, as the neural network may become biased towards the
majority classes, impairing the correct identification of samples from the minority classes. Due
to the observed data imbalance, we chose to use a training strategy focused on the classes of
greater interest: ``Rust'', ``Scab'', and ``Healthy''. This is because the early detection
of ``Rust'' and ``Scab'' diseases, as well as the identification of ``Healthy'' leaves, are of
great relevance in agriculture. Therefore, we aim to improve the classification capability of these
three specific classes (Figura 2).
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Figure 1: Quantity of images per label.

Source: Adapted from Kaggle (2020).

Figure 2: Quantity of images per label.

Source: Adapted from Kaggle (2020).

To assess the model’s performance, the dataset was divided into training and testing
partitions using an 80-20 ratio. This standard approach in machine learning separates the
data into two mutually exclusive sets: one for training the model and the other for testing
it. The training set, containing 80% of the data, is used to adjust the weights of the neural
network during training. Meanwhile, the test set, comprising the remaining 20%, is used to
assess how well the trained model generalizes to entirely new data, of which it hasn’t seen
examples during weight adjustment. Evaluation on the test set provides an unbiased estimate
of the model’s generalization ability to make predictions on unknown data. It also helps identify
whether overfitting occurred during training if the test performance is substantially worse than
the training performance (Table 1).

Table 1: Training and testing data.

Variable Number of Images Height Width Number of Colors
Training Images X 1384 224 224 3
Training Images y 1384 - - 3
Testing Images X 346 224 224 3
Testing Images y 346 - - 3

Source: from the authors (2024).
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1. Training Images variable X (1384, 224, 224, 3): This is the variable that contains the
training images. The first number 1384 refers to the total number of images in the training
set. The next three numbers 224, 224, 3 refer to the dimensions of each image: they are
images with 224 pixels in height, 224 pixels in width, and 3 color channels (RGB).

2. Training Images variable y (1384, 3): This is the variable that contains the labels (classes)
corresponding to the training images. There are 1384 labels, one for each image. Each label
is represented by a one-dimensional array of length 3, where each position corresponds to
one of the 3 classes.

3. Testing Images variable X (346, 224, 224, 3): This variable contains the test images, in
the same format as the training images. There are 346 test images, each with dimensions
of 224 x 224 pixels and 3 RGB color channels.

4. Testing Images variable y (346, 3): This variable contains the labels of the test images, in
the same format as the training labels. There are a total of 346 labels, each with a length
of 3 representing one of the 3 possible classes.

Neural Networks

In this study, eighteen pre-trained neural network architectures available in the Keras
library for Python (TENSORFLOW) were employed to perform image classification tasks. Keras
provides state-of-the-art implementations in deep learning, allowing for the construction and
rapid training of deep neural models. The eighteen pre-trained architectures were selected for
their ability to extract generic features from massive datasets (IMAGENET) (Table 2). This
enables transfer learning and quick convergence even on smaller datasets.

Table 2: Models and their parameters.

No. Model Parameters No. Model Parameters

1 Xception 22.9M 10 DenseNet121 8.1M
2 VGG16 138.4M 11 DenseNet169 14.3M
3 VGG19 143.7M 12 DenseNet201 20.2M
4 ResNet50 25.6M 13 EfficientNetB0 5.3M
5 ResNet50V2 25.6M 14 EfficientNetB1 7.9M
6 InceptionV3 23.9M 15 EfficientNetB5 30.6M
7 MobileNet 4.3M 16 EfficientNetB6 43.3M
8 MobileNetV2 3.5M 17 EfficientNetB7 66.7M
9 NASNetMobile 5.3M 18 EfficientNetV2B2 10.2M

Source: from the authors (2024).

Combining ensemble neural networks

This article addresses the concept of ensemble in machine learning, highlighting its utility
in improving the accuracy of neural network models. Ensemble is an approach that combines
the predictions of multiple individual models to produce a more robust and accurate prediction,
owing to the diversity of the models and their learning approaches, which can capture different
aspects of the input data (KOVALENKO, 2018). For instance, the ensemble process can be
implemented through averaging predictions, majority voting, or weighting individual predictions.
Initially, all predictions from these 18 neural networks were combined, regardless of the accuracy
of each one. By doing this, leveraging the diversity of approaches and learning from each

Sigmae, Alfenas, v.13, n.5, p. 58-84. 2024.



Baldine, Fonseca e Ferreira (2024) 65

neural network to create a more robust and general prediction. In the second phase, aiming
to ensure the most reliable neural networks, I will select the neural networks that achieved an
accuracy of at least 95%. This means filtering out the neural networks that demonstrated a
high level of accuracy in their individual predictions, combining only the predictions from these
top-performing neural networks to form a new ensemble.

Results and Discussion
The training and validation graphs of a neural network were plotted, a common practice

to evaluate the network’s performance during training. The first graph shows the evolution
of accuracy over the epochs for the training and validation sets. Accuracy is a measure of
how correct the network’s predictions are. It is expected that accuracy will increase during
training, indicating that the network is making more accurate predictions. The graph allows for
the evaluation of whether the network is suffering from overfitting (when the accuracy of the
training set continues to increase, but the accuracy of the validation set starts to decrease). The
second graph shows the evolution of loss over the epochs for the training and validation sets.

Loss is a measure of how far the network’s predictions are from the correct values. It is
expected that loss will decrease during training, indicating that the network is learning to make
better predictions. The graph allows for the evaluation of whether the network is suffering from
overfitting (when the loss of the training set continues to decrease, but the loss of the validation
set starts to increase). In this section, we present the performance graphs of three powerful neural
networks: EfficientNetV2B2 (Figure 3), InceptionV3 (Figure 4), and ResNet50V2 (Figure 5).
For a more comprehensive analysis, including the graphs of the other 15 neural networks, see
Appendix A.

Figure 3: The first graph shows the evolution of accuracy during training and validation of the
neural network, and the second shows the evolution of loss during training and validation of

the EfficientNetV2B2 neural network.

Source: from the authors (2024).
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Figure 4: The first graph shows the evolution of accuracy during training and validation of the
neural network, and the second shows the evolution of loss during training and validation of

the InceptionV3 neural network.

Source: from the authors (2024).

Figure 5: The first graph shows the evolution of accuracy during training and validation of the
neural network, and the second shows the evolution of loss during training and validation of

the ResNet50V2 neural network.

Source: from the authors (2024).

The process of collecting and annotating a significant number of high-quality real images
by experts is an absolutely crucial step for training AI models to achieve high accuracy (SILVA et
al., 2020). The graphs indicate that most neural networks achieved consistent results, effectively
avoiding overfitting. Overfitting is identified when training accuracy increases while validation
accuracy declines. Additionally, loss is a key metric that indicates how closely the network’s
predictions match the correct values.
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Confusion matrix of neural networks

The confusion matrix plays a crucial role in evaluating an image classification model
for apple tree leaves, distinguishing between healthy leaves and those affected by rust and scab
diseases. This table provides a visual representation of the model’s prediction accuracy for each
class, allowing for a more precise analysis of overall performance and the effectiveness of the
training process. Three classes were defined for the classification: ``healthy'', ``rust'',
and ``scab''. In this context, the confusion matrix will have three rows and three columns
corresponding to the ``healthy'', ``rust'', and ``scab'' classes. The values on the main
diagonal represent the correct classifications for each class, while the values off the diagonal
indicate incorrect classifications. For example, if the confusion matrix shows a high value in
the cell corresponding to the ``healthy'' class and the ``healthy'' prediction, this would
indicate that the model was effective in identifying healthy leaves. On the other hand, if there
are significant values off the main diagonal, this could indicate confusion between the classes
or areas where the model needs improvement. The performance metrics are precision, which is
the proportion of samples that were correctly classified in each class, and accuracy, which is the
total proportion of samples that were correctly classified. The results of the other networks can
be found in Appendix B.

In the ``healthy'' class, 106 samples were correctly classified as ``healthy'', while
no samples were incorrectly classified as ``rust'' or ``scab''. In the ``rust'' class, 124
samples were correctly classified as ``rust'', while no samples were incorrectly classified as
``healthy'' or ``scab''. In the ``scab'' class, 114 samples were correctly classified as
``scab'', while 2 samples were incorrectly classified as ``healthy'' (Figure 6).

In the ``healthy'' class, 102 samples were correctly classified as ``healthy,'' while
1 sample was incorrectly classified as ``rust'' and 3 samples as ``scab.'' In the ``rust''
class, 122 samples were correctly classified as ``rust,'' while 1 sample was incorrectly classified
as ``healthy'' and 1 sample as ``scab.'' In the ``scab'' class, 110 samples were correctly
classified as ``scab,'' while 6 samples were incorrectly classified as ``healthy.'' (Figure: 7).

In the ``healthy'' class, 97 samples were correctly classified as ``healthy,'' while 6
samples were incorrectly classified as ``rust'' and 3 samples as ``scab.'' In the ``rust''
class, 122 samples were correctly classified as ``rust,'' while 3 samples were incorrectly clas-
sified as ``healthy'' and 1 sample as ``scab.'' In the ``scab'' class, 111 samples were
correctly classified as ``scab,'' while 1 sample was incorrectly classified as ``healthy'' and
6 samples as ``rust.'' (Figure: 8).
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Figure 6: Confusion Matrix for neural network EfficientNetV2B2.

Source: from the authors (2024).

Figure 7: Confusion Matrix for neural network InceptionV3.

Source: from the authors (2024).

Sigmae, Alfenas, v.13, n.5, p. 58-84. 2024.



Baldine, Fonseca e Ferreira (2024) 69

Figure 8: Confusion Matrix for neural network ResNet50V2.

Source: from the authors (2024).

Precision, recall, f1-score of neural networks

In Table 3, we find a detailed and comprehensive analysis of the results obtained through
the application of eighteen neural networks in the task of classifying apple leaves. This analysis
allows us to thoroughly evaluate the performance of the models used and identify areas for
improvement. The metrics below, presented as abbreviations in the first row of each column of
the table, provide valuable information about the quality and effectiveness of each model:

• M (p): Macro average (precision) represents the average precision for all classes. It as-
sesses the model’s ability to correctly predict positive instances without considering class
imbalance.

• P (p): Weighted average (precision) is the average precision, taking into account the
weight of each class. It provides a more complete view of performance, considering the
class distribution in the dataset.

• M (r): Macro average (recall) is the average recall for all classes. It measures the model’s
ability to correctly identify positive instances without considering class imbalance.

• P (r): Weighted average (recall) represents the average recall, weighted by the weight of
each class. This metric considers both detection capability and class distribution.

• M (f): Macro average (f1-score) is the harmonic mean of precision and recall for all classes.
It offers a balanced view between the quality and quantity of predictions.

• P (f): Weighted average (f1-score) is the weighted harmonic mean of precision and recall,
considering the weight of each class. It is useful in situations with class imbalance.
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• Accuracy: The last column displays accuracy, which represents the proportion of instances
correctly classified by the model. It provides an overall view of the model’s performance
across all classes (Table 4).

These evaluation metrics allow us to understand the efficiency and performance of each
model comprehensively, addressing different aspects of apple leaf classification.

Table 3: Results of the neural network with precision, recall, f1-score, and accuracy metrics.

Model M (p) P (p) M (r) P (r) M (f) P (f) Accuracy
EfficientNetB0 0.98 0.98 0.98 0.98 0.98 0.98 0.98
EfficientNetB1 0.98 0.98 0.98 0.98 0.98 0.98 0.98
EfficientNetB5 0.98 0.98 0.98 0.98 0.98 0.98 0.98
EfficientNetB6 0.85 0.86 0.85 0.85 0.85 0.85 0.85
EfficientNetB7 0.87 0.87 0.87 0.87 0.87 0.87 0.87
EfficientNetV2B2 0.99 0.99 0.99 0.99 0.99 0.99 0.99
VGG16 0.73 0.73 0.73 0.73 0.73 0.73 0.73
VGG19 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Xception 0.93 0.93 0.92 0.92 0.92 0.92 0.92
InceptionV3 0.96 0.97 0.96 0.97 0.96 0.97 0.97
ResNet50 0.96 0.97 0.96 0.97 0.96 0.97 0.97
DenseNet169 0.98 0.98 0.98 0.98 0.98 0.98 0.98
DenseNet121 0.96 0.97 0.96 0.97 0.96 0.97 0.97
MobileNet 0.97 0.97 0.97 0.97 0.97 0.97 0.97
MobileNetV2 0.66 0.66 0.66 0.66 0.66 0.66 0.66
InceptionResNetV2 0.96 0.97 0.97 0.97 0.96 0.97 0.97
DenseNet201 0.98 0.99 0.99 0.99 0.99 0.99 0.99
ResNet50V2 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Source: from the authors (2024).

The results of the experiments may indicate whether this technique can, or cannot, per-
form knowledge transfer, where the filters learned in a previous training are generic enough to
be used in the classification of new image datasets. The adaptability of these architectures can
be perceived both by the flexibility to modify their structures and by the efficient adjustment
with new datasets, as highlighted by Tajbakhsh et al. (2016). The results of the experiments
indicate that even when confronted with data unseen during initial training, these architectures
maintain robust and reliable performance. This suggests that the models are capable of general-
izing patterns learned in one context to another, demonstrating an effective knowledge transfer
capability.

Table 4: Classification of neural networks by accuracy.

(Continued)
Order Model Accuracy

1 EfficientNetV2B2 0.99
2 DenseNet201 0.99
3 DenseNet169 0.98
4 EfficientNetB0 0.98
5 EfficientNetB1 0.98
6 EfficientNetB5 0.98
7 InceptionV3 0.97
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(Continuation)
Order Model Accuracy

8 InceptionResNetV2 0.97
9 MobileNet 0.97
10 ResNet50 0.97
11 DenseNet121 0.97
12 ResNet50V2 0.95
13 Xception 0.92
14 EfficientNetB7 0.87
15 EfficientNetB6 0.85
16 VGG19 0.76
17 VGG16 0.73
18 MobileNetV2 0.66

Source: from the authors (2024).

Combining neural networks

Next, we will explore the concept of ensemble by voting, a strategy that combines pre-
dictions from multiple neural networks (Table 3). The goal is to evaluate the performance of
this ensemble using metrics such as precision, recall, f1-score, and support, which are calcu-
lated for each class in question. These metrics provide a comprehensive analysis of the model’s
performance, comparing its predictions with the true labels. The results will be presented in
an organized manner, in a table that simplifies the visualization and interpretation of the met-
rics. Initially, we proceed to create the confusion matrix by adopting an approach that involved
combining all neural networks (Figure 9). This method resulted in an accuracy rate of 96.82%.
Subsequently, we will present a comprehensive table detailing the precision, recall, f1-score, and
support metrics for each class (Table 5). Through these values, it will be possible to perform a
more in-depth analysis of the model’s performance in different categories.

Figure 9: Confusion matrix of the total Ensemble-1.

Source: from the authors (2024).
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In the ``healthy'' class, 101 samples were correctly classified as ``healthy'', while
1 sample was misclassified as ``rust'' and 1 sample as ``leaf spot''. In the ``rust''
class, 121 samples were correctly classified as ``rust'', while 3 samples were misclassified as
``healthy'' and 1 sample as ``leaf spot''. In the ``leaf spot'' class, 113 samples were
correctly classified as ``leaf spot'', while 2 samples were misclassified as ``healthy'' and
3 samples as ``rust''.

As highlighted by Lee, Hong e Kim (2009), the generalization capability of neural network
systems can be significantly enhanced by combining multiple neural networks into an ensemble.
This approach not only pushes the frontier of knowledge and innovation but also demonstrates
its applicability in various fields where accuracy and reliability are paramount. Therefore, the
results obtained, shown in Figure 10 and Table 5, with the combination of the 18 neural networks,
underscore their potential to make significant contributions to classification tasks and pattern
recognition across a variety of domains.

Table 5: Metrics of ensemble-1 from all networks.

Class Precision Recall F1-Score Support
Healthy 0.95 0.98 0.97 103
Rust 0.97 0.97 0.97 125
Leaf spot 0.98 0.96 0.97 118
Source: from the authors (2024).

In the subsequent example, we will adopt the exclusive clustering approach of neural
networks whose precision reached or exceeded the minimum threshold of 95%. This selec-
tion includes the following networks: EfficientNetB0, EfficientNetB1, EfficientNetB5, Efficient-
NetV2B2, InceptionV3, ResNet50, DenseNet169, DenseNet121, MobileNet, InceptionResNetV2,
DenseNet201, and ResNet50V2, as detailed in Table 3. The underlying purpose of this strat-
egy is to maintain performance using the smallest number of neural networks possible. Moving
forward, we will present in detail the precision, recall, f1-score, and support metrics for each
category (Table 6). These metrics will provide a thorough analysis of the resulting model’s
performance. With this specific approach, we achieved an accuracy rate of 98.41%.

Table 6: Metrics of ensemble-2 from all networks.

Class Precision Recall F1-Score Support
Healthy 0.96 0.99 0.98 103
Rust 1.00 0.99 1.00 125
Scab 0.99 0.97 0.98 118
Source: from the authors (2024).

In the ``healthy'' class, 102 samples were correctly classified as ``healthy'', while 0
samples were misclassified as ``rust'' and 1 sample as ``scab''. In the ``rust'' class, 124
samples were correctly classified as ``rust'', while 1 sample was misclassified as ``healthy''
and 0 samples as ``scab''. In the ``scab'' class, 115 samples were correctly classified as
``scab'', while 3 samples were misclassified as ``healthy'' and 0 samples as ``rust''.

As observed in Figure 10 and Table 6, the results suggest that the new combination of
neural networks, selected based on a minimum accuracy of 95%, resulted in even better perfor-
mance in sample classification. This highlights the importance of carefully choosing individual
models to compose the ensemble, aiming to improve the overall performance of the machine
learning system. As mentioned by Opitz et al. (2019), ensembles consist of individually trained
classifiers, such as neural networks, whose predictions are combined to classify new instances.
It has been demonstrated that this approach reduces overfitting and increases the overall accu-
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racy of the model. This ensemble strategy, by integrating multiple classifiers, not only enhances
accuracy but also reduces the risk of overfitting, thus ensuring a more reliable generalization of
the model to new data.

Figure 10: Confusion matrix of the Ensemble-2 of 12 neural networks.

Source: from the authors (2024).

Final Considerations
The analysis of neural network classification for detecting different categories of apple

leaves—"healthy," "rust," and "scab"—revealed notable results. Table 4 presents the accuracies
obtained by each neural network model, ranked by performance. Of the 18 neural network
models evaluated, 12 achieved accuracy equal to or greater than 95%. Among these, the Effi-
cientNetV2B2 and DenseNet201 models demonstrated the highest accuracy rates, reaching 99%.
This performance underscores the effectiveness of these models in identifying the different condi-
tions of apple leaves. Furthermore, the DenseNet169 and EfficientNetB0, B1, and B5 networks
also showed high performance, with accuracies around 98%. These findings indicate that neural
networks can classify apple leaves with high precision, providing valuable support for pest and
disease management by enabling the early identification and treatment of affected trees.

On the other hand, models like VGG19, VGG16, and MobileNetV2 showed lower ac-
curacies, ranging from 76% to 66%, likely due to limitations in capturing complex apple leaf
features. These issues may also affect other models with lower performance. Potential im-
provements include fine-tuning with larger datasets, applying data augmentation, or integrating
attention mechanisms to enhance feature extraction.

In this study, the initial strategy of combining neural networks yielded favorable results,
though with slightly lower performance compared to the top-performing models (Table 5). This
approach achieved an accuracy rate of 96.82%, providing insights into the synergy between
models, identifying trends, and evaluating their impact on classifying apple leaves into categories
such as ``healthy'', ``rust'', and ``scab''.

In the second stage, the methodology was refined to maximize effectiveness. An exclusive
clustering process was implemented, selecting only neural networks with an accuracy of 95% or
higher. This selection included models such as EfficientNetB0, EfficientNetB1, EfficientNetB5,
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EfficientNetV2B2, InceptionV3, ResNet50, DenseNet169, DenseNet121, MobileNet, Inception-
ResNetV2, DenseNet201, and ResNet50V2 (Table 6). This targeted selection provided a robust
foundation for enhancing overall performance.

Analyzing metrics such as precision, recall, F1-score, and support for each category re-
vealed that this refined approach significantly improved results. The final model achieved an
accuracy rate of 98.41%. Although the initial combination of neural networks showed slightly
lower performance, it provided valuable insights for strategy adjustments. The second stage, fo-
cused on high-performing networks, resulted in a more efficient classification model, emphasizing
the importance of iterative refinement and continuous improvement.
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Appendix A - Training and Testing Graphs of Neural Networks

Figure 11: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the EfficientNetB0 neural network.

Source: Authors.

Figure 12: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the EfficientNetB1 neural network.

Source: Authors.

Figure 13: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the EfficientNetB5 neural network.

Source: Authors.
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Figure 14: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the EfficientNetB6 neural network.

Source: Authors.

Figure 15: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the EfficientNetB7 neural network.

Source: Authors.

Figure 16: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the VGG16 neural network.

Source: Authors.
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Figure 17: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the VGG19 neural network.

Source: Authors.

Figure 18: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the Xception neural network.

Source: Authors.

Figure 19: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the ResNet50 neural network.

Source: Authors.
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Figure 20: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the DenseNet169 neural network.

Source: Authors.

Figure 21: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the DenseNet121 neural network.

Source: Authors.

Figure 22: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the MobileNet neural network.

Source: Authors.
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Figure 23: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the MobileNetV2 neural network.

Source: Authors.

Figure 24: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the NASNetMobile neural network.

Source: Authors.

Figure 25: The first graph shows the evolution of accuracy during the training and validation of
the neural network and the second shows the evolution of loss during the training and validation
of the DenseNet201 neural network.

Source: Authors.
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Appendix B - Confusion Matrix of Neural Networks

EfficientNetB0

Source: Authors.

EfficientNetB1

Source: Authors.

EfficientNetB5

Source: Authors.

EfficientNetB6

Source: Authors.

DenseNet201

Source: Authors.

ResNet50V2

Source: Authors.
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Figure 26: EfficientNetB7

Source: Authors.

Figure 27: EfficientNetV2B2

Source: Authors.

Figure 28: VGG16

Source: Authors.

Figure 29: VGG19

Source: Authors.

Figure 30: Xception

Source: Authors.

Figure 31: InceptionV3

Source: Authors.
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Figure 32: ResNet50

Source: Authors.

Figure 33: DenseNet169

Source: Authors.

Figure 34: DenseNet121

Source: Authors.

Figure 35: MobileNet

Source: Authors.

Figure 36: MobileNetV2

Source: Authors.

Figure 37: DenseNet169

Source: Authors.
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