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Resumo: Experimentos desbalanceados são aqueles em que os tratamentos não têm o mesmo número de

repetições. Alguns testes de comparações múltiplas de médias precisam ser corrigidos para se comportarem

bem em situações desbalanceadas. Para o teste de Tukey é aconselhado o uso da média harmônica dos

números de repetições. O objetivo deste artigo é veri�car o desempenho das médias harmônica, aritmética,

ponderada, quadrática, e geométrica, o número mínimo, máximo e a mediana do número de repetições

como correção para o teste de Tukey, bem como propor uma correção que melhore o desempenho da média

harmônica. Foram medidas as taxas de erro tipo I e o poder dos testes, via simulação Monte Carlo, a

5% de signi�cância. A média harmônica apresenta o melhor desempenho, mas pode ser melhorada. A

proposta feita neste trabalho, conseguiu controlar o erro tipo I em todos os casos estudados.

Palavras-chave: Tukey; testes de comparação múltipla; desbalanceamento; média harmônica; experi-
mento.

Abstract: Unbalanced experiments are those in which treatments do not have the same number of repli-

cations. Some multiple comparison tests need to be correct to behave well in unbalanced situations. For

the Tukey test is suggested the use of the harmonic mean of the numbers of replications. The aim of this

paper is to verify the performance of the harmonic, arithmetic, weighted, quadratic, and geometric means,

the minimum, maximum and median number of repetitions as a correction for the Tukey test, and propose

a correction that improves the performance of harmonic mean. We measured the type I error rate and

power via Monte Carlo simulation, at 5% of signi�cance. The harmonic mean performs best but could

be improved. The proposal made in this work was capable of controlling the type I error in all cases studied.

Keywords: Tukey test; multiple comparisons tests; unbalanced experiment; harmonic mean; experi-
mentation.

Introduction

One way to produce scienti�c knowledge is through planning and analysis of experiments. An exper-
iment is a controlled production of a phenomenon to be analyzed, consisting of factors, treatments and
response variables (MACHADO et al., 2005). It is usually done to elect the best treatment(s) and this
election is made by comparing their means.

There are three types of errors that can be made when performing inferences (RAMALHO et al.,
2005). The type I error, when one rejects the true hypothesis (its probability is called α). The type II
error, when one accepts a false hypothesis (its probability is called β). And the type III error, which
occurs when one (some) treatment(s) are classi�ed in the opposite way.

On the other hand, the power of a test is the probability of rejecting a false null hypothesis. It is
de�ned as Power = 1− β (MORETTIN, 2000).

Most multiple comparison tests usually assume that the experiment is balanced, such as the Tukey's
test does. When this characteristic is lost Tukey's statistic (Tukey, 1953) can corrected taking the
harmonic mean of the number of replications, as suggested by Kramer (1956).

According to Ramalho et al. (2005), the Tukey test requires all treatment levels to have the same
number of repetition and the inferences should be made for all possible pair of means.
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This method uses the studentized (or standardized) range distribution (q):

q(I,ν,α) =
Max(Yi)−Min(Yi)

s

Let n observations Y1, Y2, . . . ,Yn come from a normal distribution, with mean µ and variance σ2.
Considering s2 as the estimator for σ2, the Minimum Signi�cant Di�erence (MSD) of the test can then
be de�ned for one level α of signi�cance with the aim to test the hypotheses H0 : µi − µi′ = 0, for the
expression:

∆ = q(I,ν,α)

√
1

2
σ̂x̄1−x̄2 = q(I,ν,α)

√
MSR

J
, (1)

where I is the number of treatments, ν is the freedom degree of the residue, J is the number of repetition,
σ̂x̄1−x̄2 is the standard-error from the di�erence between the means and MSR is the mean square of the
residual.

Then, if xi − xi′ is greater than ∆, the H0 : µi − µi′ = 0 must be rejected at the nominal level α
previously established.

According to Machado et al. (2005), the Tukey test controls the experimentwise type I error, but it
becomes very conservative in relation to the comparisonwise error rate when the number of treatments
increases.

Borges et al. (2003) state that the Tukey test for balanced experiments controls the comparisonwise
and experimentwise type I error rate under normal distribution.

According to Dunnett (1980), for balanced experiments, the Tukey (1953) establishes the following
con�dence interval set for the quantities µi − µi′ :

x̄i − x̄i′ ± q(I,ν,α)

√
MSR

J
(2)

where ȳi denotes the sample mean of the ith treatment; q(I,ν,α) is the upper quantile α of the studentized
range distribution of I normal variables, and MSR is the Mean Squared of Residual from ANOVA.

In experimentation unbalanced experiments are usual, either by loss of parcels or experiments that
are already planned to be unbalanced (such as unbalanced incomplete block design).

According to Dunnett (1980), Kramer in 1956 proposed a correction for multiple comparison statistics
(not only for Tukey's) for unbalanced experiments. Kramer (1956) noted that the expression to the right
of the sign of ± in equation (22) is equivalent to dividing the quantile for

√
2 and multiply by the standard

error of the di�erence between two means. Thus, the expression is rewritten as:

ȳi − ȳi′ ±
q(I,ν,α)√

2

√
S2

Ji
+
S2

Ji′
(3)

It is easy to see that expression (33) can be rewritten as a function of the harmonic mean of the number
of repetitions:

ȳi − ȳj ± q(I,ν,α)

√√√√√√√
S2

2(
1

Ji
+

1

Ji′

) (4)

Several authors have criticize this statement, e.g., Miller (1966) cited by Dunnett (1980), which states
that this modi�cation is inaccurate and has no mathematical proof. Instead of the harmonic mean, Miller
(1966) suggests using the arithmetic mean or median of the numbers of repetitions, but warning that this
is for �fearless statisticians�.

On the other hand, many authors advise and use the harmonic mean as an adaptation to the number
of repetitions, but is not common in the literature to �nd the reason to use this mean (RAMALHO et
al., 2005; SAMPAIO, 2010; PIMENTEL-GOMES, 2009). Even when the reason found we are not sure it
is the best best alternative.
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Methodology

For this research, routines were written in R language (R CORE TEAM, 2013). These routines have
the function to ra�e the data, perform multiple comparisons tests and Monte Carlo simulations.

Data were simulated from a completely randomized design following the statistical model:

yij = µ+ τi + eij (5)

where yij is the jth replication of the ith treatment, for i = 1, . . . , I, j = 1, . . . , Ji, I ∈ (2, 3, 5, 10, 15, 20,
30) and Ji ∈ (3, 6, 9, 12, 15, 18, 21, 24); µ is a common constant (overall mean), set to zero without loss
of generality; τi is the �xed e�ect of the ith treatment; and eij ∼ N(0, 1) is the random error associated
to yij .

The unbalance level (unbalance rate) has been de�ned as the ratio of the maximum and the minimum
number of replications:

δ =
max (Ji)

min (Ji)
, (6)

where Ji is the number of replications of one treatment i. Therefore δ > 1.
To ensure the randomness of the experiment and to get all possible values of δ, the number of

repetitions were chosen as follows:

1. A matrix was created to contain the possible numbers of replications. The unbalance rate δ was
computed by dividing each pair of values (eq. 66) of the superior triangular matrix (Table 11). (As
long as the balanced case does not matter, was not necessary to evaluate the main diagonal).

2. A vector of size I (treatments) was created and �lled with values drawn with replacement from the
set J = [3, 6, 9, 12, 15, 18, 21, 24] such that a maximum �xed δ occurs. It is done by �xing the �rst
and the last element in the sorted vector.

Table 1: Unbalance rate according to the number of replications
Replications 3 6 9 12 15 18 21 24

3 - 2.00 3.00 4.00 5.00 6.00 7.00 8.00

6 - - 1.50 2.00 2.50 3.00 3.50 4.00

9 - - - 1.33 1.67 2.00 2.33 2.67

12 - - - - 1.25 1.50 1.75 2.00

15 - - - - - 1.20 1.40 1.60

18 - - - - - - 1.17 1.33

21 - - - - - - - 1.14

24 - - - - - - - -

It is important to note that each δ occurred a di�erent number of times since we can have more than
on pair of numbers such ration gives the same. For instance, δ = 8 only occurs when the minimum is 3
and the maximum is 24. On the other hand, δ = 2 is the result of four ratios (Table 11)

Then, in order to present this result in 2D graphics it was computed the average of type I error
rate and power for these cases with multiple estimates per δ. However, every estimate can be seen in
the 3D graphics, since it displays the maximum and the minimum number of replicates (rather than the
unbalance level).

Tow groups experiments were performed. Group I, with the purpose of estimating the error type I
and group II, to estimate the power.

Experiments in group I were simulated under H0. We set the e�ect of treatment equal to zero, i.e.,
τ1 = τ2 = . . . = τI = 0, without loss of generality.

On the other hand, in group II consecutive treatment e�ects were set to distance 0.5 standard error
of the mean from each other.

Each group had 196,000 experiments - product of 7 possible numbers of treatments I ∈ (2, 3, 5,10,
15, 20, 30), 28 unbalance levels (δ) that that come from the numbers of replications J ∈ (3, 6, 9, 12, 15,
18, 21,24) and 1000 Monte Carlo runs.

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.



Martins Júnior, Ferreira e Ramos (2013) 24

It was computed only the experimentwise type I error rate, given by

etI =
Number of experiments with at least one error

Number of experiments
(7)

To infer about the di�erence between the type I error rate and the nominal level of signi�cance
(α = 5%), we used the exact con�dence interval for proportions with 99% of probability. Given by:

IC1−α :

LI =
1

1 +
(n− y + 1)Fα/2;ν1=2(n−y+1),ν2=2y

y

;LS =
1

1 +
(n− y)

(y + 1)Fα/2;ν1=2(y+1),ν2=2(n−y)

 (8)

where Fα/2 is the upper quantile of an F distribution, with ν1 and ν2 degrees of freedom. If y = 0, then
LI = 0 and LS is given in (88), or if y = n, then LS = 1 and LI is given in 88 (FERREIRA, 2005).

The 99% con�dence interval for the type I error rate was [3.3927%, 7.0504%], i.e., every observed
value outside this interval can be considered di�erent from the nominal level of signi�cance.

It is known that when a test is liberal it tends to be more powerful (and vice versa). In order to avoid
this illusion, here we compute not only the power but the real power of the tests.

The real power is a metric that allows the estimation of the power that a test would have if it
controlled the type I error rate. We could not �nd references about real power in the literature, but it is
quite intuitive. We de�ne the real power (RP ) as:

RP =

{
P − (etI − α), if etI > α;
P, otherwise

(9)

where P is the empirical power, etI is the type I error rate and α is the nominal level of signi�cance.
In each experiment, 9 corrections (arithmetic mean, median, geometric mean, quadratic mean,

weighted mean, the maximum and the minimum and the proposed one) for the Tukey test were evaluated
plus the Tukey-Kramer (harmonic mean). In Table 22 we show most of them.

Table 2: Main functions evaluated to correct the Tukey's statistic under unbalanced condition

(but the proposed one)

Arithmetic mean Geometric Mean Quadratic mean Weighted mean

JAM =

I∑
i=1

Ji

I JGM = I

√√√√ I∏
i=1

Ji JQM =

√√√√√√
I∑

i=1

J2
i

I
JW =

I∑
i=1

(wiJi)

I∑
i=1

wi

Harmonic mean Median Minimum Maximum

JHM =
I

I∑
i=1

1

Ji

JMd = md(Ji) JMin = min (Ji) JMax = max (Ji)

where Ji is the number of replications of the ith treatment, I is the number of treatments and wi is the
weight for the ith treatment.

The Proposed function (JP ) is a mixture of the harmonic mean (HM) and minimum function (Min),
i.e., a weighted mean, based on the number of treatments and on the unbalance level δ. Those two
functions were chosen because they are limited to the area you want to achieve with a new test. HM use
to be liberal and Min use to be conservative (as will be discussed later), so a mixture of them should be
appropriate. Thus, JP is de�ned as:

JP = (1− p̂)HM + p̂Min

where p̂ =
a

a+ b
; a is the distance between HM 's type I error rate and the nominal level of signi�cance

(α); b is the distance between Min's type I error rate and α, as can be seen in Figure 11.
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Figure 1: Illustration of a and b required for the computation of p̂.

This is done for all possible unbalance levels δ and number of treatments I. If both are conservative
or liberal use of the value that is closer to the nominal level of signi�cance.

It is easy to see that under balanced condition, i.e. J1 = J2 = · · · = JI = J , all those functions
(corrections) equals to J .

With the aim to estimate the functional relationship between the number of treatments (I), the
unbalance level (δ), the maximum and minimum number of replication and the proportion in which the
harmonic mean and minimum function should be mixed (p), a function f() of all possible combinations
of these quantities was investigated.

p = f [I, σ,max(Ji),min(Ji)] + ε

where ε ∼ N(0, σ2
e).

The best model was selected via backward method according to the Akaike criterion (DRAPER;
SMITH, 1998).

Results and discussion

In this section, we present and discuss the results of Groups I and II, i.e., Type I error rates and
power for all situations studied.

First, we present the type I error rates along the unbalance levels, δ = 1.14 to 8.0, for all numbers of
treatments studied (I = 2 to 30).

In Figure 22a the results in a experiment with two treatments. Using the Min function the test is
exact up to the δ = 2 then becomes to be conservative. Furthermore, using the HM functions and P ,
the test is exact for all values of δ. It may also be noted that the function GM fails to control the type I
error from δ = 3.5. The functions Md and AM had an extremely similar behavior. On the other hand,
QM , WM and Max fail to control the type I error for δ > 1.75.

In �gure 22b we can �nd the results for an experiment with 30 treatments. One can observe a very
similar behavior, but in this case the function Min becomes conservatively at δ > 2.0. Again HM and
P are conservative for all values of δ. In this case, the functions GM , Md, AM , QM , WM and Max
fail to control the type I error for δ > 2.66. The functions AM and Md had a slightly di�erence between
each other in this case. Md showed a slightly better performance compared to AM for strong unbalance.

The behavior of the functions for treatments between 2 and 30 can be found in Appendix.
In general, the results of the Tukey test using the Min function is the most conservative and using

the Max function was the most liberal. That was expected, according to Kelseman and Rogan (1978).
The HM controlled the type I error only for some treatments numbers and values of δ. The HM was

able to maintain the nominal level of signi�cance only for experiments with a maximum of 5 treatments.
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Over 5 treatments, starts controlling only small imbalances. Therefore, one can not conclude that a test
is conservative, as stated by Hayter (1984).

The 3D graphics (Figure 33) also show the type I error rate, but along the maximum and the minimum
number of replications. Here the behavior is more detailed since for 2D graphs we used only the mean for
each time. So, it can be noticed the di�erences for a same δ. For those graphics we are going to describe
only the behavior of the 3 more competitive functions, namely Min (bold square), HM (empty triangle)
and P (empty square).

For the HM function the type I error rate tends to increase as the maximum increases in a given
maximum unbalance level, e.g., let an experiment with minimum 3 and maximum 6 replications of
treatments and another one with 12 and 24, then they have the same unbalance level but the second
experiment tends to present a greater type I error rate. The opposite occurs for the Min function. The
P function is always exact or conservative.

The Table 33 presents the range of values of δ in which the functions are conservative, liberal or exact
for all numbers of treatments. This table aims to summarize the behavior of the three functions with
better performance.

The other functions - not mentioned in Table 33 - fail to control the type I error even for small δ
and few treatments. Due to their failure in controlling the type I error their powers are illusory, so we
estimate the real power as describe previously.

Table 3: Results of the functions with the best performances analyzed
Function Treatments Conservator Accurate Liberal

2 - ∀ -

3 - ∀ -

HM 5 - < 8, 0 8, 0
10 - ≤ 3, 0 > 3, 0
15 - ≤ 2, 33 > 2, 33
20 - ≤ 2, 0 > 2, 0
30 - ≤ 2, 33 > 2, 33

2 > 2, 0 ≤ 2, 0 -

3 > 1, 5 ≤ 1, 5 -

Min 5 > 1, 2 ≤ 1, 2 -

10 > 1, 2 ≤ 1, 2 -

15 ∀ - -

20 ∀ - -

30 ∀ - -

2 - ∀ -

3 - ∀ -

P 5 - ∀ -

10 - ∀ -

15 8, 0 < 8, 0 -

20 > 6, 0 ≤ 6, 0 -

30 > 3, 5 ≤ 3, 5 -

Now the results for the Group II experiments are presented, which aimed to estimate the power of
the tests. First will be presented the power in �gures 44a and 44b, standing for 2 and 30 treatments,
respectively. In both cases we evaluated all the possible values of δ (1.14 to 8.0), and the other numbers
of treatments can be found in Appendix.

Figure 55 brings the behavior of the real power along the unbalance levels for 2 and 30 treatments.
One can �nd the behavior of the real power for other numbers of treatments in the Appendix.
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(a)

(b)

Figure 2: Type I error rate along unbalance levels (δ) for 2 (a) and 30 treatments (b).

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.



Martins Júnior, Ferreira e Ramos (2013) 28

(a)

(b)

Figure 3: Type I error rate (3D) along minimum and maximum values for Ji for 2 (a) and 30

treatments (b).
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(a)

(b)

Figure 4: Power along unbalance levels (δ) for 2 (a) and 30 treatments (b).
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(a)

(b)

Figure 5: Real power along unbalance levels (δ) for 2 (a) and 30 treatments (b).
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For Group II of experiments (Power and Real Power) is interesting to note that the power decreases
as the δ increases. It happens to all statistics that we considered reasonable, i.e., Min, P and HM ,
respectively. These functions are also the most a�ected by the unbalance level. It means that the
power of these statistics greatly decreases as the unbalance is greater. On the other hand, observing
statistics already considered not reasonable as Max, WM and QM , which are signi�cantly a�ected by
the unbalance level, it can be seen that the power slightly decreases or remains when the δ increases.
This is a desired feature but illusory in statistics that practice 60% to 85% of type I error.

One possible explanation for the decrease in power with increasing δ is that some treatments' means
are estimated less accurately due to the unbalance. That makes the test to accept H0 more easily, even
when the null is not true.

Possibly, the more important result of this work is the proportion to mix the harmonic mean and
the minimum value of replications in a unbalanced experiment. With this information any researcher
can perform a better Tukey test for his/her unbalanced experiment. The model indicated to explain the
proportion for combining Min and HM was found to be

p̂ = 0.2956515− 0.0085824I − 0.0298501δ + 0.0055853Iδ, (10)

where I is the number of treatments and δ is the unbalance level, i.e., the ratio between the maximum
and the minimum number of replications. The determination coe�cient was found to be R2 = 28.63%,
what suggests that p is a function of more e�ects that can be considered in further studies. This is not
the best model in R2, but as the model gets more complex the gain in R2 is not relevant, less of 4% with
all the 4 initial quantities and they interactions. Hence, this model is indicated.

Conclusions

Some of the studied functions fail to control the type I error even for few treatments and weak
unbalance. This is the case of the functions Max, WM , QM , AM , Md and GM . Therefore, these
functions are not indicated for correcting the Tukey's statistic for unbalanced experiments.

For all corrections, the type I error seems to increase faster when the maximum number of replications
is bigger. When the minimum value decreases, type I error also increases but in a slower way.

The type I error rate observed for the Min function (being even 0% in many situations) classi�es it
as very conservative. Consequently, the power of the Min function is growing more slowly as the number
of treatments increases.

The functions Md and AM have similar behavior for both type I error and for power.
For the proposed corrections, the harmonic mean and the minimum value of replications, the power

decreases and the type I error rate increases as the unbalance gets stronger, independent of the number
of treatments.

The HM controlled the type I error only for some treatments numbers and values of δ. The HM was
able to maintain the nominal level of signi�cance only for experiments with a maximum of 5 treatments.
Over 5 treatments, starts controlling only small imbalances.

The proposed correction (P ) managed to keep the type I error rate at/under the nominal level of
signi�cance of the test, and showed a reasonable power gain in relation to HM . Therefore, the use of
HM in order to calculate the number of repetitions is indicated for a few treatments (maximum 5) and
small δ (maximum 2). Otherwise, we advise the use of P , which has a better performance. However, the
P correction can be further improved.

As can be seen, the mixture plays its role, improving the harmonic mean correction.
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Appendix: Extra graphics

Type I error rate

(a)

(b)

Figure 6: Type I error rate along unbalance levels (δ) for 3 (a) and 5 treatments (b).
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(a)

(b)

Figure 7: Type I error rate along unbalance levels (δ) for 10 (a) and 15 treatments (b).
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Figure 8: Type I error rate along unbalance levels (δ) for 20 treatments.

Figure 9: Type I error rate (3D) along minimum and maximum values for Ji for 3 treatments.
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Type I error rate: 3D

(a)

(b)

Figure 10: Type I error rate (3D) along minimum and maximum values for Ji for 5 (a) and 10

treatments (b).

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.
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Figure 11: Type I error rate (3D) along minimum and maximum values for Ji for 15 (a) and 20

treatments (b).

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.
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Figure 12: Power along unbalance levels (δ) for 3 (a) and 5 treatments (b).

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.
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Figure 13: Power along unbalance levels (δ) for 10 (a) and 15 treatments (b).

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.
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Figure 14: Power along unbalance levels (δ) for 20 treatments.

Real power

Figure 15: Real power along unbalance levels (δ) for 3 treatments.

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.
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Figure 16: Real power along unbalance levels (δ) for 5 (a) and 10 treatments (b).

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.
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Figure 17: Real power along unbalance levels (δ) for 15 (a) and 20 treatments (b).

Sigmae, Alfenas, v.2, n.2, p. 21-42. 2013.


