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data with outcome related missing covariate values
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Resumo: O modelo de taxas de falha proporcionais de Cox é comumente usado na área médica
para investigar a associação entre o tempo de sobrevivência e covariáveis. No entanto, é bastante
comum que a análise envolva covariáveis com valores ausentes. Uma suposição razoável é que
os dados são censoring-ignorable MAR, no sentido de que o mecanismo de perda não depende
do tempo de censura, mas pode depender do tempo de falha. Nesse caso, uma análise de casos
completos produz estimativas viesadas para os coeficientes de regressão. Através de um estudo de
simulação, comparamos três abordagens de imputação múltipla para uma covariável parcialmente
observada quando o mecanismo de perda envolve o tempo de sobrevivência: (i) o método proposto
por White & RoystonWhite & Royston (20092009) que usa a função de taxa de falha acumulada em uma aproximação
do modelo de imputação, (ii) o método descrito por Bartlett et al.Bartlett et al. (20152015) que incorpora o modelo
de Cox no processo de imputação, e (iii) a abordagem CART, um método conhecido por lidar
com distribuições assimétricas, interações e relações não lineares. Os resultados da simulação
mostraram que o método de White & RoystonWhite & Royston (20092009) pode produzir estimativas severamente vi-
esadas enquanto a abordagem CART subestima a incerteza da imputação resultando em baixas
taxas de cobertura. O método de Bartlett et al.Bartlett et al. (20152015) apresentou o melhor desempenho geral,
com pequeno viés de pequenas amostras e taxas de cobertura próximas aos valores nominais.
Os métodos de imputação são aplicados a um conjunto de dados de sobrevida de pacientes com
doença de Chagas.

Palavras-chave: Covariáveis ausentes, modelo de Cox, imputação múltipla, estudo de si-
mulação, MAR.

Abstract: The Cox proportional hazards model is commonly used in medical research for inves-
tigating the association between the survival time and covariates. However, it is quite common
for the analysis to involve missing covariate values. It is reasonable to assume that the data
are censoring-ignorable MAR in the sense that missingness does not depend on censoring time
but may depend on failure time. In this case, a complete cases analysis produce biased regres-
sion coefficient estimates. Through a simulation study, we compare three multiple imputation
approaches for a missing covariate when missingness is survival time-dependent: (i) the method
proposed by White & RoystonWhite & Royston (20092009) that uses the cumulative hazard in an approximation to
the imputation model, (ii) the method described by Bartlett et al.Bartlett et al. (20152015) that incorporates the
Cox model in the imputation process, and (iii) the CART approach, a method known to deal
with skewed distributions, interaction and nonlinear relations. Simulation results show that the
method of White & RoystonWhite & Royston (20092009) may produce very biased estimates while the CART appro-
ach underestimates the imputation uncertainty resulting in low coverage rates. The method of
Bartlett et al.Bartlett et al. (20152015) had the best performance overall, with small finite sample bias and cove-
rage rates close to nominal values. We apply the imputation approaches to a Chagas disease
dataset.

Keywords: Missing covariates, Cox regression, multiple imputation, simulation study, censoring-
ignorable MAR.
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Introduction

Analysis of time-to-event data often involves missing covariates and the Cox proportional
hazards model (CoxCox, 19721972) is generally adopted for analysis. A reasonable assumption is that
data are censoring-ignorable MAR in the sense that missingness does not depend on censoring
time but may depend on failure time. In this case, the so-called complete-case analysis (that
is, discarding missing data in covariates) leads to loss of efficiency and results in bias in the
estimates of the regression parameters (Hsu & YuHsu & Yu, 20192019). When data are censoring-ignorable
MAR, we cannot directly use the Cox partial likelihood since we need to model the failure time
and the covariates jointly (Chen et al.Chen et al., 20092009). Common approaches to the missing data problem
are inverse probability weighting (IPW) (Robins et al.Robins et al., 19941994) and multiple imputation (MI)
(Little & RubinLittle & Rubin, 20192019). IPW methods require a model for the probability that an individual
has complete data and uses estimated weights to rebalance the complete cases so that the
complete data are representative of the whole sample (Seaman et al.Seaman et al., 20122012). MI, on the other
hand, needs a model for the joint distribution of the missing data (a multivariate outcome) given
the observed data and is generally more efficient than IPW (Seaman & WhiteSeaman & White, 20132013). Qi et al.Qi et al.
(20102010) presented a comparison of multiple imputation and fully augmented weighted estimators.
Hsu & YuHsu & Yu (20192019) proposed a nonparametric multiple imputation approach and compared it
with existing augmented IPW methods. Yi et al.Yi et al. (20202020) developed a method based on inverse
probability weighting with the propensity estimated by nonparametric kernel regression.

The focus of this work is on multiple imputation. The method was initially proposed
by RubinRubin (19871987) and is now a well-established technique for analyzing data sets where some
units have incomplete observations (Carpenter et al.Carpenter et al., 20062006). The problem with developing the
imputation model for survival data is that, excluding some very special cases, the conditi-
onal distribution of covariates given survival time does not follow any common distribution
(Carpenter & KenwardCarpenter & Kenward, 20122012). White & RoystonWhite & Royston (20092009) developed approximations to the im-
putation model which are valid for small covariate effects and/or small cumulative incidence
White & RoystonWhite & Royston (20092009). In their approach, the cumulative hazard is used in the imputa-
tion model replacing the observed survival time. Bartlett et al.Bartlett et al. (20152015) presented an imputation
model that incorporates the substantive model – the Cox model – in the derivation of impu-
tations. Because the conditional distribution of covariates given survival times is unknown, a
rejection algorithm is used to simulate draws from this predictive distribution. The acceptance
probability depends on whether the missing observations refer or not to a censored individual.
Unfortunately, Bartlett et al.Bartlett et al. (20152015) simulations considered only missing completely at random
(MCAR) data. There is a growing interest in the use of machine learning techniques for multiple
imputation (Van BuurenVan Buuren, 20182018). A popular class of algorithms is Classification and Regression
Trees (CART) (Breiman et al.Breiman et al., 20172017) which have been promoted as strong tools for prediction
modeling (Steyerberg et al.Steyerberg et al., 20192019). This nonparametric technique uses recursive partitioning, a
statistical method to construct binary trees. CART methods are robust against outliers, can
deal with multicollinearity and skewed distributions, and are flexible to fit interactions and non-
linear relations. There is, to our knowledge, no comparison of these imputation methods for the
case of censoring-ignorable MAR data.

Our goal is to present a comparison of MI methods for imputing missing covariates data when
missingness of the covariate is outcome related. Specifically, we compare the performance of three
multiple imputation approaches: (i) the method proposed by White & RoystonWhite & Royston (20092009), (ii) the
method described by Bartlett et al.Bartlett et al. (20152015), and (iii) the CART approach. The imputation
methods are applied to the Chagas disease study which involved 619 patients between the
years of 1999 and 2019. The aim of the study was to identify factors that influence the risk
of death in patients with heart disease due to Chagas. A covariate of particular interest, the
right ventricular Tei index, was missing for 182 (29.4%) of the patients for which we believe the
missingness propensity could depend on the survival outcome.
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This paper is organized as follows. In Section , we discuss the multiple imputation methods
in the context of missing covariates in the survival model. In Section , we give results from a
simulation study. In Section , we apply the methods to the Chagas data. A discussion follows
in Section . Finally, Section concludes the paper.

Methods

Let Ti the time at which follow-up of individual i ends, with Di = 1 if the Ti is the survival
time and Di = 0 if Ti is the censoring time, for i = 1, . . . , n. When Di = 0 the event occurs at
some T̃i > Ti. Assume that we have two covariates Yi1 and Yi2, so our data consists of the triple
(Ti, Di,Y i) for the ith individual, where the covariate vector Y i is measured at baseline. We
also assume the survival data are CAR (censored at random), that is, conditional on covariates
in the survival model, the censoring process is independent of the survival times.

For a survival time distribution f(t), t ≥ 0 with cumulative distribution function F (t), the
survival function is S(t) = Pr(T > t) = 1 − F (t), the hazard function is h(t) = f(t)/S(t) and
the cumulative hazard is H(t) =

∫ t
0 h(s)ds = − log {S(t)} .

Under the Cox proportional hazards model (CoxCox, 19721972, 19751975) we have h(Ti|Yi1, Yi2) =
h0(Ti) exp(β1Yi1 + β2Yi2) and H(Ti|Yi1, Yi2) = H0(Ti) exp(β1Yi1 + β2Yi2). With complete data
(i.e. no data are missing), the estimation of β is accomplished by solving the following estimating
equations

U(β̂) =

n∑
i=1

Di

[
Y i −

∑
j∈R(Ti)

Y i exp(β1Yi1 + β1Yi2)∑
j∈R(Ti)

exp(β1Yi1 + β1Yi2)

]
= 0, (1)

where R(Ti) is the set of all individuals who are still under study at a time just prior to ti.
The maximum likelihood estimate, β̂, from (11) is consistent and asymptotically normal under
certain regularity conditions (TsiatisTsiatis, 19811981).

We turn now to the problem of estimation with missing covariates. Suppose that Yi1 is
subject to missing data and Yi2 is always observed and let Ri = 1 if Yi1 is observed and 0
if Yi1 is missing. Denote by Y obs the observed component of Y and by Y mis the missing
counterpart. The missing value mechanism relates the probability of observing unit i’s data giver
their potentially unseen values (Carpenter & KenwardCarpenter & Kenward, 20122012). The complete-case analysis of β is
based on the solution to (11) using only those individuals with Ri = 1. This analysis can be quite
inefficient if there are appreciable missing values and will be biased if missingness depends on
the outcome (Yi et al.Yi et al., 20202020; Paik & TsaiPaik & Tsai, 19971997; Kalbfleisch & PrenticeKalbfleisch & Prentice, 20112011; RathouzRathouz, 20072007).
With missing data, a consistent estimator of β can be obtained by taking the expectation over
the conditional predictive distribution f(Y mis|Y obs,R), that is, solving the estimating equation

Ef(Y mis|Y obs,R)

{
U(β̂)

}
= 0. (2)

The MI solution reverses the order of expectations and solution in (22). The main idea is
repeatedly draw missing values Ỹ mis from the (Bayesian) conditional predictive distribution of
the missing observations, f(Y mis|Y obs,R), and solve U(β̂,Y ) = 0. Then, combine the results
in a single inference taking into account the imputation uncertainty. Multiple imputation is
generally more efficient than complete-case analysis (Van BuurenVan Buuren, 20182018). Imputation of partially
observed covariates under the Cox regression model is complicated because, excluding some
special cases, the conditional distribution of covariates given survival times will not follow any
common distribution (Carpenter & KenwardCarpenter & Kenward, 20122012; White & RoystonWhite & Royston, 20092009).

In this paper, we compare three ways to overcome this problem: (i) the approximation of
White & RoystonWhite & Royston (20092009) that uses the cumulative hazard in the imputation model, (ii) the
method of Bartlett et al.Bartlett et al. (20152015) that incorporates de Cox model in the imputation process
factoring f(Ti, Yi1, Yi2) = f(Ti|Yi1, Yi2)f12(Yi1, Yi2), and (iii) the CART approach to impute
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missing values. Because we are not using full Bayesian framework, the draw of missing values
from the predictive distribution is approximate.

All these imputation models can be used in an approach commonly referred to as full
conditional specification (FCS) which imputes missing data on a variable-by-variable basis
(Carpenter et al.Carpenter et al., 20062006; Van BuurenVan Buuren, 20182018; White et al.White et al., 20112011). FCS has the ability to han-
dle different variable types because each variable is imputed using its own imputation model.

Using the cumulative hazard

White & RoystonWhite & Royston (20092009) proposed an imputation approach from the consideration of the
conditional distribution of covariates given the survival time. Under the proportional hazards
model, the log conditional distribution of Y1 given Y2 and the survival time is, up to a constant
of proportionality,

log {f(Y1|T,D, Y2)} = log {f(Y1|Y2)}+D [log {h0(T )}+ (β1Y1 + β2Y2)]−
H0(T ) exp(β1Yi + β2Y2).

(3)

When Y1 is binary in (33), White & RoystonWhite & Royston (20092009), using Taylor series approximation valid
when V ar(Y2) is small, showed that we can write

logit {Pr(Y1 = 1|T,D, Y2)} = logit {Pr(Y1 = 1|Y2)}+Dβ1 −H0(T )(eβ1 − 1)eβ2Y2

≈ ζ0 + ζ1Y2 + ζ2D + ζ3H0(T ) + ζ4H0(T )× Y2,
(4)

for constants ζ0, . . . , ζ4. That is, (44) is approximately the logistic regression of Y1 on Y2, D,
H0(T ). The result is exact when Y2 is not present; otherwise, it is approximated and the
approximation gets worse for larger V ar(Y2). When Y1 is continuous, in particular Y1|Y2 ∼
N(α0 + α1Y2, σ

2), we have from (33),

log {f(Y1|T,D, Y2)} ≈
(Y1 − α0 − α1Y2)

2

2σ2
+Dβ1Y1 −H0(T )e(β1Y1+β2Y2). (5)

Following a fuller Taylor series approximation for e(β1Y1+β2Y2), valid when V ar(Y1) and
V ar(Y2) are small, White & RoystonWhite & Royston (20092009) concluded that the imputation model resulting
from (55) is approximately a linear regression on D, H0(T ) and Y2. The authors also pointed
that the addition of an interaction term Y2 × H0(T ) could improve the accuracy of the ap-
proximation. In a simulation study comparing various strategies for estimating the cumulative
hazard H0(T ), the authors concluded that the method that approximates H0(t) by H(t), the
Nelson-Aalen estimate of the cumulative hazard, the censoring indicator and Y2 as covariates
was the best method in general.

Incorporating the substantive model

Now we describe the modified FCS approach of Bartlett et al.Bartlett et al. (20152015) that accommodates
the substantive model in the imputation process. This is known as congenial imputation model
(Carpenter & KenwardCarpenter & Kenward, 20122012). Because the conditional distribution of covariates given survival
times does not belong to a standard parametric family, a rejection algorithm is used to simulate
draws from this predictive distribution.

The first step is to fit the substantive model (the Cox model) to the observed data and
currently imputed values. Then, the maximum partial likelihood estimators β̂ and its associated
covariance matrix Ω̂ are used to approximate a draw from the Bayesian posterior by drawing
β from N(β̂, Ω̂) and extract the current estimate of H0(t). Define a proposal distribution f(·)
for missing Y1 given Y2 and considers the proposal Y ∗i1 for the ith individual missing Y1. The
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acceptance probability depends on whether or not it refers to a censored individual. If Di = 0,
a censored observation, the acceptance probability is

S(Ti|Y ∗i1, Yi2;β) (6)

while for Di = 1, an uncensored observation, we accept Y ∗i1 with probability

H0(t) exp [1 + (Y ∗i1β1 + Yi2β2)−H0(t) exp(Y ∗i1β1 + Yi2β2)] . (7)

The proposal distribution f(·) depends on the nature of the missing covariate. That is, for
Y1 binary we consider a logistic regression while a linear regression can be used when Y1 is
continuous. If Y2 is also subject to missingness we should consider a proposal distribution for
missing Y2 given Y1 and simply add another step to the algorithm.

Classification and regression trees

Classification and regression trees (CART) (Breiman et al.Breiman et al., 20172017) are a popular class of
machine learning algorithms. CART models seek predictors and cut points in the predictors
that are used to split the sample. The method is based on statistically optimal splitting of the
individuals into pairs of smaller subgroups. Splits are based on cut-off levels of the predictors,
which produce maximum separation among two subgroups and a minimum variability with
these subgroups with respect to the outcome (Steyerberg et al.Steyerberg et al., 20192019). The target variable can
be discrete (classification tree) or continuous (regression tree).

CART methods have properties that make them attractive for imputation: they are robust
against outliers, can deal with multicollinearity and skewed distributions, and are flexible enough
to fit interactions and nonlinear relations. The idea is to form a donor pool of all observed cases
at the terminal node of the fitted tree, and then randomly draw a case from the donor group
to be used as the imputed value. Parameter uncertainty is incorporated by fitting the tree on a
bootstrap sample.

Assume again we have two covariates Y1 and Y2 where Y1 is subject to missingness. We have
n1 observed values and n0 missing values for Y1. Based on Van BuurenVan Buuren (20182018), the major steps
of the proposed algorithm for creating imputations is as follows.

1. Draw a bootstrap sample of size n1 from the observed data.

2. Fit a tree model f(Y1) to the bootstrap sample using Y2, T and D as predictors.

3. Predict the n0 terminal nodes gj from f(Y1,miss).

4. Construct n0 sets Zj of all cases at node gj , each containing dj candidate donors.

5. Draw one donor ij from Zj randomly for j = 1, . . . , n0.

6. Calculate the imputations Ỹj1 = Yij1 for j = 1, . . . , n0.

The composition of the donor groups will vary over different bootstrap replications, thus in-
corporating sampling uncertainty about the tree (Van BuurenVan Buuren, 20182018). The algorithm is repeated
to produce M imputed datasets. Again, the FCS framework can be used in the case of multiple
missing covariates.
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The multiple imputation estimator

Once M multiply imputed datasets are obtained, the results are combined using the rules
established in RubinRubin (19871987). Specifically, let β̂k and V̂ k denote the estimate of β and its covariate
matrix from the fit of the Cox regression model to the kth completed dataset, i ∈ (1, . . . ,M).
The MI estimate of β is the simple average

β̂MI =
1

M

M∑
i=1

β̂i. (8)

Define the average within-imputation covariance matrix as

Ŵ =
1

M

M∑
i=1

V̂ i, (9)

and the between-imputation covariance matrix,

B̂ =
1

M − 1

M∑
i=1

(β̂i − β̂MI)(β̂i − β̂MI)
T . (10)

Then, an estimate of the covariance of β̂MI is given by

V̂ MI = Ŵ +

(
1 +

1

M

)
B̂. (11)

So, the precision for β̂MI , given by (1111) involves three sources of variation: the between- and
within-imputation variability plus the extra variance caused by the fact that a finite number of
imputations is used for estimating β. Traditional choices for M are M = 3, M = 5 and M = 10.
The larger M gets, the smaller the effect of simulation error on the total variance (Van BuurenVan Buuren,
20182018). For a scalar β and large sample sizes, the reference distribution for interval estimates
and significance tests is a t distribution,

(β − β̂MI)V̂
−1/2
MI ∼ tν ,

where the degrees of freedom, obtained from a Satterthwaite approximation (Little & RubinLittle & Rubin,
20192019), are given by

ν = (M − 1)

{
1 +

1

M + 1

Ŵ

B̂

}2

. (12)

Simulation Study

In what precedes, various imputation approaches to overcome the bias occurring in the
complete-case analysis have been presented. It is of interest to quantify the bias and precision
under various scenarios of missing data and censoring. To this end, a simulation study was
conducted. The following estimators were compared: the estimator computed without missing
values (FULL), the complete-case (CC) estimator, the MI estimator using the congenial model
(CONG), the MI estimator using the approximation of White and Royston (WR) and the CART
approach (CART).

Data generation
The data generation process was based on the work of Yi et al.Yi et al. (20202020). Three different

settings were considered with varying censoring and missing mechanisms. Tables 1-3 provide
details about data generation. The following is a summary of the simulation scheme.
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� Covariate vector: The time-independent covariate vector is (Y1, Y2) in settings 1-2 and
(Y1, Y2, Y3) in setting 3.

� True hazard of T : The survival times follows a Cox proportional hazards model with
baseline hazard h0(t), which is equal to 1 in settings 1-2 and t/2 in setting 3.

� True propensity: The probability of observing Y1 is logistic depending only on T in setting
1, on T and Y2 in settings 2-3.

� True censoring: The censoring time follows another Cox proportional hazards model,
which depends on no covariate in setting 1, on Y1 in setting 1, and on (Y1, Y2) in setting 3.

� Censoring and missing rate: The censoring rate varied from 37% to 82% and the missing
rate varied from 29% to 47%.

In each setting, the survival times follow a Cox proportional hazards model with baseline
hazard and the censoring times follow another Cox proportional hazards models which may or
may not depend on covariates. That is, censoring and survival times are independent conditional
on covariates.

Computation
All computations were done in R 4.1.1, using the packages survival, mice and tidyverse.

Samples of size n = 500 and n = 1000 were generated according to the settings given in Tables 1-
3. A total of S = 1000 such samples were generated. For each sample, the five estimators under
comparison were obtained. M = 10 multiple imputations were considered for all imputation
methods and the function mice::pool() was used to combine the inferences. For the WR and
CONG methods, the cumulative baseline hazard H0(t) was estimated via mice::nelsonaalen()
and survival::basehaz(), respectively, and entered the model in a smoothed version obtained
through stats::loess() function. Multiple imputations for these methods were obtained using the
function mice::mice() with default arguments. The CONG method was implemented taking a
single imputation from the CART algorithm as starting values for missing observations. The
algorithm was run for another 100 steps and the imputations was taken as imputed values in
steps multiples of 10.

Several measures were computed to measure the relative performance of the various methods.
Bias was defined as the difference between the estimate and the true value of the parameter,
SE was defined as the asymptotic standard error of the estimator. In addition, the empirical
standard deviation SD of the estimator over S = 1000 simulations and empirical coverage
probability CP of 95% confidence intervals were calculated. For both Full and CC methods,
the confidence interval was constructed based on the normal approximation, and for imputation
methods, it was constructed based on the t distribution.

Tables 1-3 present a summary of the simulation results.

Results for the first setting

Table 11 shows the results for the first setting with 1000 simulation runs and sample sizes
n = 500 and n = 1000. Mean proportion of missing data and censored observations were 44.8%
and 47.6%, respectively.

In summary, CC showed considerable bias for both parameter estimates, with low empirical
coverage rates increasing for the larger sample size. In terms of coverage and bias, WR performed
as poorly as CC analysis. CART showed small bias but underestimated the variance, implying
empirical coverage rates under the nominal level. CONG method produced the best results, with
negligible small-sample bias and good empirical coverage. In general, MI recovered information,
as can be seen from the standard error of estimators between those of FULL and CC analysis.
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Tabela 1: Bias, SE, SD and CP based on 1000 runs under setting 1
Estimation of β1 Estimation of β2

n Method Bias SE SD CP Bias SE SD CP
500 FULL 0.002 0.078 0.079 0.952 0.000 0.133 0.133 0.954

CC 0.150 0.116 0.120 0.756 0.145 0.196 0.199 0.892
CONG 0.010 0.102 0.109 0.940 -0.015 0.153 0.156 0.941

WR -0.176 0.111 0.080 0.655 -0.136 0.160 0.134 0.902
CART 0.012 0.094 0.116 0.886 -0.053 0.146 0.168 0.880

1000 FULL 0.004 0.055 0.056 0.944 0.002 0.094 0.093 0.948
CC 0.150 0.081 0.084 0.544 0.150 0.137 0.138 0.810

CONG 0.007 0.071 0.077 0.937 -0.016 0.107 0.107 0.948
WR -0.175 0.078 0.055 0.354 -0.138 0.112 0.094 0.795

CART 0.019 0.065 0.082 0.873 -0.027 0.102 0.117 0.901

Covariate vector: (Y1, Y2), Y1 ∼ N(0, 1), Y2 ∼ Ber(0.5), Y1 ⊥ Y2
True hazard of T : h(T ) = exp(β1Y1 + β2Y2), β = (β1, β2) = (1, 1)
True propensity: Pr(R = 1) = 1− {1 + exp(T − 0.5)}−1
True censoring: SC(T ) = exp(−T 1/2)
Source: Author.

Results for the second setting

Table 22 shows the results for the second setting with 1000 simulation runs and sample sizes
n = 500 and n = 1000. Mean proportion of missing data and censored observations were 29.4%
and 37.0%, respectively.

Tabela 2: Bias, SE, SD and CP based on 1000 runs under setting 2
Estimation of β1 Estimation of β2

n Method Bias SE SD CP Bias SE SD CP
500 FULL 0.002 0.122 0.124 0.947 0.006 0.123 0.125 0.950

CC 0.080 0.148 0.150 0.914 0.160 0.154 0.160 0.836
CONG 0.002 0.138 0.141 0.947 -0.003 0.128 0.131 0.948

WR 0.001 0.144 0.141 0.956 -0.024 0.129 0.126 0.954
CART 0.014 0.136 0.148 0.938 -0.008 0.127 0.133 0.937

1000 FULL 0.002 0.086 0.086 0.946 0.002 0.086 0.090 0.942
CC 0.079 0.104 0.108 0.881 0.156 0.108 0.113 0.705

CONG 0.003 0.097 0.101 0.935 -0.007 0.090 0.093 0.940
WR 0.004 0.101 0.100 0.947 -0.027 0.090 0.089 0.931

CART 0.016 0.095 0.105 0.913 -0.006 0.089 0.096 0.936

Covariate vector: (Y1, Y2), Y1 ∼ Ber(0.5), Y2 ∼ Ber(0.5), Y1 ⊥ Y2
True hazard of T : h(T ) = exp(β1Y1 + β2Y2), β = (β1, β2) = (1, 1)
True propensity: Pr(R = 1) = 1− {1 + exp(T + Y2)}−1
True censoring: SC(T ) = exp

{
−T 1/2 exp(−Y1/4)

}
Source: Author.

In contrast to the first scenario, the bias of CC analysis is now larger for Y2 than Y1. Note
that Y2 is included in the propensity for missing Y1. The performance of WR was good, with
little bias and acceptable empirical coverage rates. As in the first setting, the CART method
presented a small bias but underestimated uncertainty. CONG was the best imputation method
again, with negligible bias and empirical coverage very close to the nominal level. Even though
MI can recover information, the reduction in standard errors was smaller than in the first setting,
which can be explained by the uncertainty of modeling a binary covariate.
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Results for the third setting

Table 33 shows the results for the second setting with 1000 simulation runs and sample sizes
n = 1000. Mean proportion of missing data was 46.9% while the censoring rate was 60.2% and
81.5% for the two scenarios considered.

Tabela 3: Bias, SE, SD and CP based on 1000 runs under setting 3
Estimation of β1 Estimation of β2 Estimation of β3

α Method Bias SE SD CP Bias SE SD CP Bias SE SD CP
1 FULL 0.006 0.109 0.111 0.948 0.004 0.109 0.102 0.953 0.007 0.354 0.359 0.946

CC 0.210 0.176 0.178 0.781 0.206 0.174 0.175 0.795 -0.036 0.575 0.597 0.947
CONG 0.021 0.144 0.146 0.946 0.020 0.113 0.110 0.957 0.062 0.374 0.395 0.940
WR -0.001 0.165 0.155 0.955 -0.028 0.114 0.103 0.958 -0.020 0.376 0.365 0.952

CART 0.053 0.129 0.188 0.809 -0.017 0.112 0.105 0.958 0.003 0.367 0.384 0.948
2 FULL 0.005 0.161 0.168 0.940 0.004 0.161 0.159 0.953 0.015 0.521 0.543 0.948

CC 0.265 0.294 0.309 0.854 0.273 0.293 0.302 0.857 -0.026 0.962 0.973 0.949
CONG 0.107 0.235 0.248 0.914 0.015 0.168 0.166 0.960 0.098 0.551 0.570 0.943
WR 0.088 0.290 0.273 0.954 -0.030 0.169 0.160 0.958 0.020 0.552 0.538 0.963

CART 0.055 0.199 0.361 0.692 -0.007 0.165 0.162 0.959 0.016 0.541 0.567 0.943

Covariate vector: (Y1, Y2, Y3), Y1|Y2, Y3 ∼ Ber(logit(0.5Y2 −Y3)), Y2 ∼ Ber(0.5), Y3 ∼ Unif(0, 0.5), Y2 ⊥ Y3
True hazard of T : h(T ) = 0.5T exp(β1Y1 + β2Y2 + β3Y3), β = (β1, β2, β2) = (1, 1, 1)
True propensity: Pr(R = 1) = 1− {1 + exp(2T − Y3 − 1.5)}−1

True censoring: SC(T ) = exp
{
−(αT )1/2 exp(0.2Y1 + 0.1Y2)

}
Source: Author.

In this extreme scenario, large bias occurred in the estimation of the first two parameters.
Note that the missing rate is higher than the previous settings and, although the true propensity
for missing Y1 involves Y3, little bias was observed in the estimation of the third parameter.

� For α = 1, WR gave the best results overall. CONG and CART were similar in terms
of bias, although serious undercoverage was observed for the effect of Y1 when the CART
method was used.

� For α = 2, CART had the best performance in terms of bias, followed by WR and CONG.
However, empirical coverage for CART for the first parameter was about 69%. The unde-
restimation of uncertainty is evident when SD and SE are compared.

Real Data Example

In this Section we apply the imputation methods to a dataset of Chagas patients. Chagas
disease is a neglected tropical disease, with the majority of the individuals affected living in
Latin America. It is caused by the protozoan Trypanosoma cruzi, with risk factors strongly
related to low socioeconomic status. Chagas disease, is an important cause of heart failure,
stroke, arrhythmia, and sudden death (Nunes et al.Nunes et al., 20182018).

The study involved patients who were referred for treatment at the Hospital das Cĺınicas
at the Federal University of Minas Gerais, Brazil, in the years of 1999 to 2019. A total of 619
patients with Chagas and idiopathic cardiomyopathy were included. The survival outcome is
time to death from any cause, which occurred for 209 patients. Several patient characteristics
were measured at baseline. The following variables were considered in this application: Chagas
serology group (Chagas or idiopathic cardiomyopathy); ejection fraction (EF), a measurement,
expressed as a percentage, of how much blood the left ventricle pumps out with each contraction;
the New York Heart Association (NYHA) Functional Classification, a categorization of cardiac
symptoms on a patient’s daily activities, varying from 1 (no limitation of physical activity) to
4 (unable to carry on any physical activity without discomfort); and right ventricular (RV) Tei
index (RVTei), an echocardiographic measurement of right ventricular function, which is defined
as the sum of the isovolumetric contraction and relaxation time divided by the ejection time
of the RV. For 182 patients (29.4%), however, RVTei could not be obtained because one or

Sigmae, Alfenas, v.12, n.1, p. 76-89. 2023.
66a Reunião da Região Brasileira da Sociedade Internacional de Biometria (RBRAS)



Silva (2023) 85

both of the quantities used in the calculation could not be evaluated. RV dysfunction, assessed
by the Tei index, is known to be a strong indicator of poor prognosis (Nunes et al.Nunes et al., 20082008).
Missingness propensity for this variable is related to the presence of arrhythmias, especially atrial
fibrillation or ventricular arrhythmias, which can alter isovolumetric contraction and relaxation
times, and right ventricular ejection time. In addition, the presence of arrhythmias expresses
greater severity of myocardial involvement and greater risk of death in patients with heart disease
due to Chagas. Therefore, we believe missingness in RVTei is outcome related and we further
assume missingness does not depend on censoring times.

The analysis model of interest for these data is a Cox proportional hazards model including
covariates RVTei, Chagas group, ejection fraction and NYHA. We fitted the three imputation
strategies as previously described in Session and compared them to the CC analysis. MI was
conducted with the same configuration as the simulation study so M = 10 imputations were
considered. Table 44 summarizes the results of estimating the coefficients of covariates in Cox
regression.

Tabela 4: Chagas data: results of Cox regression by complete cases and three imputation
methods

CC CONG WR CART

Est. SE P value Est. SE P value Est. SE P value Est. SE P value
RVTei 1.334 0.271 0.000 1.173 0.242 0.000 1.256 0.272 0.000 1.263 0.285 0.000
Chagas 0.763 0.208 0.000 0.966 0.190 0.000 0.926 0.185 0.000 0.916 0.189 0.000

EF -0.052 0.009 0.000 -0.065 0.007 0.000 -0.060 0.008 0.000 -0.060 0.008 0.000
NYHA2 0.180 0.205 0.378 0.237 0.190 0.216 0.238 0.186 0.203 0.239 0.185 0.198
NYHA3 0.441 0.256 0.085 0.489 0.233 0.037 0.481 0.234 0.042 0.476 0.232 0.042
NYHA4 1.082 0.310 0.000 1.075 0.270 0.000 0.859 0.281 0.003 0.926 0.271 0.001

Source: Author.

Based on these results, the following conclusions can be drawn.

1. All variables were found to be important to explain time to death. In particular, the risk
is higher among patients in the Chagas group, with lower ejection fraction values, greater
functional impairment and higher Tei index values.

2. WR, CONG, and CART all yielded similar conclusions. Compared with CC analysis,
imputation methods gave higher estimated effects for the coefficients associated with RVTei
and NYHA class 4, but lower effects for the others. Setting a significance level of 5%, the
crucial change in inferences occurs for the NYHA class 3 effect, whose comparison with
class I changes from non-statistically significant in the CC analysis to significant in all
models. There is no evidence that NYHA class II patients differ from those in class I. The
remaining effects are highly significant.

3. As occurred in the simulation study, the standard errors oF the CC estimator was generally
higher compared to MI, which explains the change in significance of the NYHA class
II effect. In general, the CART method had the lowest SE. The inference using this
method should be viewed with caution, due to the underestimation of the uncertainty of
the imputation that resulted in anti-conservative coverage probabilities.

Discussion

Multiple imputation has become the dominant approach in medical research to deal with
missing values (Steyerberg et al.Steyerberg et al., 20192019). MI is attractive because it is both practical and widely
applicable. To be valid, each imputation must be a Bayesian draw from the conditional pre-
dictive distribution of the missing observations, in a way that the multiply imputed values take
into account the uncertainty about the imputed value. Carpenter & KenwardCarpenter & Kenward (20122012) provide the
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Bayesian justification of MI and discuss the conditions under which the approximation provided
by MI has the expected frequentist properties.

MI methods are not robust to misspecification of the conditional distribution of missing va-
lues given the observed quantities. Bartlett et al.Bartlett et al. (20152015) note that when the Cox proportional
hazards model is the substantive model, standard software implementations of the MI may im-
pute values from models that are incompatible with the substantive model. This is the case when
the true response model involves interactions and/or non-linear terms (Carpenter & KenwardCarpenter & Kenward,
20122012). In this sense, the approximation by White & RoystonWhite & Royston (20092009) is expected to be valid only
for small covariate effects and/or small cumulative incidence. Because imputations are drawn
conditional on a chosen statistical model, if the imputation model is wrong, then parameter
estimates are inconsistent (Carpenter et al.Carpenter et al., 20062006). To overcome the dependence on the spe-
cified parametric model, we seek to investigate the performance of the CART approach. This
statistical learning method is known for its predictive performance and the ability to fit inte-
ractions and nonlinear relations. As mentioned in Van BuurenVan Buuren (20182018), unfortunately nearly all
implementations of tree methods produce single imputations. Furthermore, we are not aware of
any comparisons of this method for outcome related missing covariate missingness.

Simulation results confirmed that CC analysis is severely biased when missingness is related
to the outcome. The performance of the WR method was highly dependent on the simulation
setting. In the first setting, the estimator returned bias even larger than CC analysis although
the performance was good in the other settings. This result emphasizes the point that when
imputation models are wrong, resulting estimates are not consistent and inferences are invalid.
The predictive performance of CART has also been confirmed. The variables can enter the
imputation model without any transformation, therefore reducing additional work by the data
analyst. For the WR and CONG methods, on the other hand, estimates of the cumulative ba-
seline function are required for the imputation model. However, underestimation of imputation
uncertainty have been found in all settings for CART. As a result, confidence intervals presented
lower than nominal coverage probabilities. CART imputes values from a donor pool comprised
of all observed cases at the terminal node. Depending on the missingness propensity, the donor
pool may not carry the correct sampling uncertainty. It appears to be a problem especially
when sample sizes are small or the imputation model contains variables strongly related to the
missingness. CONG presented good performance in all cases, with negligible bias and good CP.
In settings 1-2, the estimates were very close to the FULL analysis in terms of Bias and CP. In
setting 3, however, due to the high proportion of censored observations, the performance distinc-
tion between the imputation methods were not so clear. A more comprehensive investigation
of the relative merits of these imputation methods in the case of multiple missing covariates is
lacking.

Even though we can never recover the true missing data, MI recovers information from
the observed data (Carpenter & KenwardCarpenter & Kenward, 20122012). As a consequence, MI results in narrower
confidence intervals as compared to CC analysis. In addition, improvement can be obtained
through adding additional variables in the imputation model variables that are predictive of
missing data and/or missing data mechanism (Collins et al.Collins et al., 20012001; RubinRubin, 19961996).

An alternative to the MI approach, not pursued in this paper, is the IPW method (Yi et al.Yi et al.,
20202020). IPW estimators include only individuals who were fully observed and are sensitive to
the choice of weighting model. The inverse probability-weighted estimates are known to be less
efficient compared to MI (Seaman et al.Seaman et al., 20122012). Methods for gaining efficiency and robustness
to the weighting model have been proposed (Hsu & YuHsu & Yu, 20192019; Qi et al.Qi et al., 20102010). A comparison
between them will be the focus of future research.
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Final Remarks

Missing data are a pervasive problem in the analysis of epidemiological and clinical data. In
this paper, we discussed the problem of missing covariate values and their impact on inferences
for the Cox model.

As shown in a simulation study, analysis of complete data results in loss of efficiency and
causes biased estimates of regression model parameters when the missing data mechanism in-
volves the response. Multiple imputation is an elegant and powerful technique that can be used
to solve the problem. However, care must be taken when choosing the imputation model, as
the inferences are not robust to the misspecification of the model. In this sense, our simulation
study demonstrated that the White and Royston approximation can perform worse than the
complete-cases analysis, whereas the CART method, although it is recognized as a powerful
predictive tool, can considerably underestimate the imputation uncertainty, resulting in very
low coverage. The MI strategy that accommodates the analysis model in the imputation was,
in general, the best method.

In simulations, we have assumed that only one covariate is subject to missing data and that
the proportional hazards assumption holds. Real-world situations often involve multiple covari-
ates with missing values. Missingness in these covariates, which are often time-dependent, pose
additional challenges to the analysis. Other practical problems may involve non-proportional
hazards, cure fraction and informative censoring. Further research on the imputation methods
is still required.
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Enrico A, Rezende, Renato A, Carmo, Guilherme Augusto A, & Barbosa, Marcia M. 2008.
Right ventricular dysfunction is an independent predictor of survival in patients with dilated
chronic Chagas’ cardiomyopathy. International journal of cardiology, 127(3), 372–379.

Paik, Myunghee Cho, & Tsai, Wei-Yann. 1997. On using the Cox proportional hazards model
with missing covariates. Biometrika, 84(3), 579–593.

Qi, Lihong, Wang, Ying-Fang, & He, Yulei. 2010. A comparison of multiple imputation and
fully augmented weighted estimators for Cox regression with missing covariates. Statistics in
medicine, 29(25), 2592–2604.

Rathouz, Paul J. 2007. Identifiability assumptions for missing covariate data in failure time
regression models. Biostatistics, 8(2), 345–356.

Robins, James M, Rotnitzky, Andrea, & Zhao, Lue Ping. 1994. Estimation of regression
coefficients when some regressors are not always observed. Journal of the American
statistical Association, 89(427), 846–866.

Rubin, Donald B. 1987. Multiple imputation for survey nonresponse.

Rubin, Donald B. 1996. Multiple imputation after 18+ years. Journal of the American
statistical Association, 91(434), 473–489.

Seaman, Shaun R, & White, Ian R. 2013. Review of inverse probability weighting for dealing
with missing data. Statistical methods in medical research, 22(3), 278–295.

Seaman, Shaun R, White, Ian R, Copas, Andrew J, & Li, Leah. 2012. Combining multiple
imputation and inverse-probability weighting. Biometrics, 68(1), 129–137.

Sigmae, Alfenas, v.12, n.1, p. 76-89. 2023.
66a Reunião da Região Brasileira da Sociedade Internacional de Biometria (RBRAS)



Silva (2023) 89

Steyerberg, Ewout W, et al. 2019. Clinical prediction models. Springer.

Tsiatis, Anastasios A. 1981. A large sample study of Cox’s regression model. The Annals of
Statistics, 9(1), 93–108.

Van Buuren, Stef. 2018. Flexible imputation of missing data. CRC press.

White, Ian R., & Royston, Patrick. 2009. Imputing missing covariate values for the Cox model.
Statistics in medicine, 28(15), 1982–1998.

White, Ian R, Royston, Patrick, & Wood, Angela M. 2011. Multiple imputation using chained
equations: issues and guidance for practice. Statistics in medicine, 30(4), 377–399.

Yi, Yanyao, Ye, Ting, Yu, Menggang, & Shao, Jun. 2020. Cox regression with
survival-time-dependent missing covariate values. Biometrics, 76(2), 460–471.

Sigmae, Alfenas, v.12, n.1, p. 76-89. 2023.
66a Reunião da Região Brasileira da Sociedade Internacional de Biometria (RBRAS)


