
ISSN: 2317-0840

On the properties of Lucas-balancing numbers by matrix method

Prasanta K. Ray

International Institute of Information Technology Bhubaneswar, India.

E-mail: prasanta@ iiit-bh. ac. inprasanta@ iiit-bh. ac. in

Abstract: Balancing numbers n and balancers r are originally defined as the solution of the
Diophantine equation 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r). If n is a balancing
number, then 8n2 + 1 is a perfect square. Further, If n is a balancing number then the positive
square root of 8n2+1 is called a Lucas-balancing number. These numbers can be generated by the
linear recurrences Bn+1 = 6Bn−Bn−1 and Cn+1 = 6Cn−Cn−1 where Bn and Cn are respectively
denoted by the nth balancing number and nth Lucas-balancing number. There is another way to
generate balancing and Lucas-balancing numbers using powers of matrices

QB =

(
6 −1
1 0

)
and QC =

(
17 −3
3 −1

)
.

The matrix representation, indeed gives many known and new formulas for balancing and Lucas-
balancing numbers. In this paper, using matrix algebra we obtain several interesting results on
Lucas-balancing numbers.

Keywords: Balancing numbers, Lucas-balancing numbers, Balancing matrix, Lucas-balancing
matrix.

Introduction

Behera and Panda (1999) recently introduced a number sequence called balancing numbers
defined in the following way: A positive integer n is called a balancing number with balancer r, if
it is the solution of the Diophantine equation 1+2+ . . .+(n−1) = (n+1)+(n+2)+ . . .+(n+r).

They also proved that the recurrence relation for balancing numbers is

Bn+1 = 6Bn −Bn−1, n ≥ 2, (1)

where Bn is the nth balancing number with B1 = 1 and B2 = 6.
It is well known that n is a balancing number if and only if n2 is a triangular number, that

is 8n2 + 1 is a perfect square (BEHERA; PANDA, 1999). Since 0 = 8 · 02 + 1 is a perfect square,
B0 = 0 is also accepted as balancing number. In Panda (2009), Lucas-balancing numbers Cn

are defined by Cn =
√

8B2
n + 1 where Bn is the nth balancing number. The recurrence relation

for Lucas-balancing numbers is same as that of balancing numbers, that is

Cn+1 = 6Cn − Cn−1, n ≥ 2, (2)

with C1 = 3 and C2 = 17. Liptai (2004), showed that the only balancing number in the sequence
of Fibonacci numbers is 1. In Ray (2012) and Ray (2013), Ray obtained nice product formulas for
both balancing and Lucas-balancing numbers. Panda and Ray (2011) linked balancing numbers
with Pell and associated Pell numbers. There is another way to generate balancing numbers
using powers of matrices

QB =

(
6 −1
1 0

)
,

known as balancing matrix introduced in Ray (2012). Many interesting properties of balancing
numbers using matrix method are also studied in Ray (2012).
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The matrix representation indeed gives many known and new formulas for balancing num-
bers. In this paper, using matrix algebra we obtain several interesting results on Lucas-balancing
numbers.

As in Ray (2012), the balancing matrix QB is in the form

QB =

(
6 −1
1 0

)
,

whose entries are first three balancing numbers. Also in Ray (2012), it has been shown that for
integer n ≥ 1, the nth power of QB i.e. Qn

B is given by

Qn
B =

(
Bn+1 −Bn

Bn −Bn−1

)
. (3)

The identity (3) provides an alternate proof of the Cassini’s formula for balancing numbers
(PANDA; RAY, 2011),

B2
n −Bn+1Bn−1 = 1.

Since the identity Qm+n
B = Qm

BQ
n
B is true for all integers m,n with n ≥ 1, the following

identities are straightforward:

Bm+n+1 = Bm+1Bn+1 −BmBn and Bm+n = Bm+1Bn −BmBn−1.

These two results are basically similar, but could be applied to derive new identities for
balancing numbers such as the following:

Cm+n = Bm+1Cn −BmCn−1,

Bm+n = BmCn +BnCm,

Cm+n = CmCn + 8BmBn,

where Bn and Cn are nth balancing number and nth Lucas-balancing number respectively. The
following properties of balancing and Lucas-balancing numbers are given in (PANDA; RAY,
2011).

Bn+1 −Bn−1 = 2Cn and Cn+1 − Cn−1 = 16Bn.

In this study, we define Lucas-balancing matrix QC by

QC =

(
17 −3
3 −1

)
, (4)

whose entries are first three Lucas-balancing numbers 1, 3 and 17. It is easy to verify that(
Cn+1

Cn

)
= QC

(
Bn

Bn−1

)
and 8

(
Bn+1

Bn

)
= QC

(
Cn

Cn−1

)
.

Matrix representation of Lucas-balancing numbers

In this section, we present a new matrix representation of both balancing and Lucas-balancing
numbers. We obtain Cassini’s formulas and some interesting properties of these numbers by a
similar method as applied to the balancing QB matrix in Ray (2012). Our aim is not to compute
the power of matrices, rather we find different relations between matrices containing balancing
and Lucas-balancing numbers.

The following theorem establishes an interesting relation between balancing QB matrix and
Lucas-balancing QC matrix.

Sigmae, Alfenas, v.3, n.1, p. 1-6. 2014.



Ray (2014) 3

Theorem 1: Let QC be the Lucas-balancing matrix as in (4). Then for integers n ≥ 1,

Qn
C =


8

n
2

(
Bn+1 −Bn

Bn −Bn−1

)
for n even;

8
n−1
2

(
Cn+1 −Cn

Cn −Cn−1

)
, for n odd;

(5)

where Bn and Cn are nth balancing and Lucas-balancing numbers respectively.

Proof.: The proof proceeds by induction on n. First we consider odd n. The relation (5) is

indeed true for n = 1, because QC =

(
C2 −C1

C1 C0

)
, where C2 = 17, C1 = 3, C0 = 1. We assume

that suppose it is true for n = k, where k is an odd number. That is

Qk
C = 8

k−1
2

(
Ck+1 −Ck

Ck −Ck−1

)
.

By using properties of Lucas-balancing numbers and induction hypothesis, we can write

Qk+2
C = Qk

CQ
2
C = 8

k+1
2

(
Ck+3 −Ck+2

Ck+2 −Ck+1

)
,

as desired. Secondly, we consider even n. It is clear that the relation (5) is true for n = 2. We
assume that suppose it is true for n = k, where k is an even number. That is

Qk
B = 8

k
2

(
Bk+1 −Bk

Bk −Bk−1

)
.

By using properties of balancing numbers and induction hypothesis, we can write

Qk+2
B = Qk

BQ
2
B = 8

k+2
2

(
Bk+3 −Bk+2

Bk+2 −Bk+1

)
,

as desired. Hence the relation (5) holds for all n.

�

Theorem 2: Let Qn
C be as in (5). Then for all integers n ≥ 1, the following identities are valid:

i. det(Qn
C) = (−1)n8n

ii. B2
n −Bn+1Bn−1 = 1

iii. Cn+1Cn−1 − C2
n = 8

Proof.: To establish (i), we use induction on n. Clearly det(QC) = −8. Assuming det(Qk
C) =

(−1)k8k, and by the multiplicative property of the determinant, we obtain

det(Qk+1
C ) = det(Qk

C) det(QC) = (−1)k8k(−8) = (−1)k+18k+1,

which shows (i) for all n ≥ 1. The identities (ii) and (iii) can be easily seen by using (5) and (i)
for even and odd values of n, respectively. Second and third identities are indeed the Cassini
formulas for balancing and Lucas-balancing numbers.

�
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The Binet’s formulas for balancing and Lucas-balancing numbers were established in Behera
and Panda (1999). The following theorem is another approach to establish Binet’s formulas
with the help of linear algebra.
Theorem 3: For all integers n, the Binet’s formula for balancing and Lucas-balancing numbers
are respectively given by

Bn =
λn1 − λn2

2
√

8
, Cn =

λn1 + λn2
2

,

where λ1 = 3 +
√

8 and λ2 = 3−
√

8.

Proof.: Let QC be the matrix as in (4). By solving the characteristic equation α2− 16α− 8 = 0
of QC , we obtain the eigenvalues and their corresponding eigenvectors as

α1 =
√

8λ1, α2 = −
√

8λ2 and v1 = (1, λ2), v2 = (1, λ1),

where λ1 = 3 +
√

8 and λ2 = 3−
√

8. We now consider the matrices A = (vT1 , v
T
2 ) =

(
1 1
λ2 λ1

)
and B = dig(λ1, λ2) =

(√
8λ1 0

0 −
√

8λ2

)
to diagonalize the matrix QC by B = A−1QCA.

By using the properties of similar matrices, for any integer n, we can write Bn = A−1Qn
CA.

Furthermore, Qn
C = ABnA−1. Therefore, taking the nth power of diagonal matrix B, we obtain

Qn
C =

8n−1

2

(
λn+1
1 − (−1)nλn+1

2 −λn1 + (−1)nλn2
λn1 − (−1)nλn2 −λn−1

1 + (−1)nλn−1
2

)
.

The proof directly follows from equation (5) for n as even and odd respectively.

�

Theorem 4: For all integers m and n, the following identities are valid:

i). 8Bm+n = CnCm+1 − Cn−1Cm

ii). Bm+n = BnBm+1 −Bn−1Bm

iii). Cm+n = Bn+1Cm −BnCm−1

iv). 8Bm−n = Cm+1Cn − CmCn+1

v). Bm−n = BmBn+1 −Bm+1Bn

vi). Cm−n = Bm+1Cn −BmCn+1

Proof.: By (5), we can write Qm+n
C as

Qm+n
C =


8

m+n
2

(
Bm+n+1 −Bm+n

Bm+n −Bm+n−1

)
for m+n even;

8
m+n−1

2

(
Cm+n+1 −Cm+n

Cm+n −Cm+n−1

)
for m+n odd.

(6)

For the case of odd m and n,

Qm
CQ

n
C = 8

m+n
2

−1

(
Cm+1Cn+1 − CmCn CmCn−1 − Cm+1Cn

CmCn+1 − Cm−1Cn Cm−1Cn−1 − CmCn

)
. (7)

Comparing the first row second column entries from both the matrices (6) and (7), we obtain

8Bm+n = CnCm+1 − Cn−1Cm,
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while the second row first column entries gives

8Bm+n = CmCn+1 − Cm−1Cn.

For the case of even m and n,

Qm
CQ

n
C = 8

m+n
2

(
Bm+1Bn+1 −BmBn BmBn−1 −Bm+1Bn

BmBn+1 −Bm−1Bn Bm−1Bn−1 −BmBn

)
. (8)

Comparing the first row second column entries from both the matrices (6) and (8), we obtain

Bm+n = BnBm+1 −Bn−1Bm,

while the second row first column entries gives

Bm+n = BmBn+1 −Bm−1Bn.

For the cases odd m and even n or even m and odd n,

Qm
CQ

n
C = 8

m+n−1
2

(
Bm+1Cn+1 −BmCn BmCn−1 −Bm+1Cn

BmCn+1 −Bm−1Cn Bm−1Cn−1 −BmCn

)
. (9)

Comparing the first row second column entries from both the matrices (6) and (9), we obtain

Cm+n = BmCn−1 −Bm+1Cn,

while the second row first column entries gives

Bm+n = BmCn+1 −Bm−1Cn.

The inverse of the matrix Qn
C is given by

Q−n
C =


1

8
n
2

(
−Bn−1 Bn

−Bn Bn+1

)
for n even;

−1

8
n+1
2

(
−Cn−1 Cn

−Cn Cn+1

)
, for n odd.

(10)

In a similar manner, by computing the equality Qm−n = QmQ−n, the desired results are obtai-
ned. Indeed, for the case of odd m and n,

8Bm−n = Cm+1Cn − CmCn+1.

For the case of even m and n,

Bm−n = BmBn+1 −Bm+1Bn.

Finally, for the case of odd m and even n or even m and odd n,

Cm−n = BmCn−1 −Bm−1Cn.

This completes the proof of the theorem.

�

Sigmae, Alfenas, v.3, n.1, p. 1-6. 2014.



Ray (2014) 6

References

BEHERA, A.; PANDA, G. K. On the square roots of triangular numbers, The Fibonacci
Quarterly, v.37, n.2, p. 98-105. 1999.

LIPTAI, K. Fibonacci balancing numbers, The Fibonacci Quarterly, v.42, n.4, p. 330-340.
2004.

PANDA, G. K.; RAY, P. K. Some links of balancing and cobalancing numbers with Pell and
associated Pell numbers, Bulletin of the Institute of Mathematics, Academia Sinica (New
Series), v.6, n.1, p. 41-72. 2011.

PANDA, G. K. Some fascinating properties of balancing numbers, in Proc. Eleventh Internat.
Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194, p.
185-189. 2009.

RAY, P. K. Application of Chybeshev polynomials in factorization of balancing and
Lucas-balancing Numbers, Bol. Soc. Paran. Mat. v.30, n.2, p. 49-56. 2012.

RAY, P. K. Factorization of negatively subscripted balancing and Lucas-balancing
numbers,Bol. Soc. Paran. Mat., v.31, n.2, p. 161-173. 2013.

RAY, P. K. Certain matrices associated with balancing and Lucas-balancing numbers,
Matematika, v.28, n.1, p. 15-22. 2012.

Sigmae, Alfenas, v.3, n.1, p. 1-6. 2014.


