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Resumo: Este trabalho apresenta a comparação de duas distribuições de probabilidade com
parâmetros espećıficos para determinação da assimetria. As distribuições kum-normal e a nor-
mal assimétrica foram escolhidas por apresentarem, como caso particular, a distribuição normal.
A qualidade do ajuste, a flexibilidade de assimetria e a quantidade de parâmetros foram fatores
usados para comparação. Pesquisas afirmam que a normal assimétrica possui limitações em
relação à flexibilidade da cauda, apresentando uma certa resistência na modelagem da assime-
tria, pois, com o aumento do valor absoluto do parâmetro que modela a assimetria esta tende a
uma half-normal. Os objetivos deste trabalho foram: implementar a distribuição kum-normal e,
com o uso de simulação Monte Carlo, gerar dados com ńıveis crescentes de assimetria, para ele-
ger o melhor ajuste. As distribuições também foram comparadas quanto ao ajuste do dados reais
de besouros Tribolium cofusum, cultivados a 29◦C. Para a implementação foi utilizado o pacote
gamlss do software R, que permitiu o ajuste dos modelos, simulação de dados de distribuições
generalizadas, e obtenção do critério de informação de Akaike, critério de informação bayesiano
e o teste da razão de verossimilhança, utilizados para comparação. A distribuição kum-normal
ajustou-se melhor com o aumento do ńıvel de assimetria, quando comparada à distribuição nor-
mal assimétrica. Para os dados reais as duas distribuições não diferiram significativamente,
apresentando equivalente estimação do grau de assimetria destes dados.
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Abstract: This paper presents the comparison of two probability distributions with specific pa-
rameters for modelling asymmetry. Kum-normal and Azzalini’s skew normal distributions were
chosen because they turn, in special case, into the normal distribution. The quality of the fit,
flexibility and amount of asymmetry parameters were factors used for comparison. Researches
state that the Azzalini’s skew normal distribution has limitations regarding the flexibility of the
tail, presenting certain resistance in modelling asymmetry since, by increasing the absolute value
of the asymmetry parameter, it tends to a half-normal distribution. The objectives of this study
were to implement a kum-normal distribution and, using Monte Carlo simulation to generate
data with increasing levels of asymmetry, choose the best fit. The distributions were also compa-
red in modelling a beetle data set ( Tribolium cofusum), grown at 29◦C. For implementation we
used the R package gamlss, that allows adjusting of the models, simulating data of generalized
distributions and obtaining the Akaike information criterion, Bayesian information criterion
and likelihood ratio test, used for comparison. The kum-normal distribution was better adjusted
by increasing the level of asymmetry compared to Azzalini’s skew normal distribution. For real
data the two distributions do not differ significantly, showing equivalent estimation of the degree
of asymmetry of these data.

Keywords: Statistics. Probability Distributions. R software.

†Corresponding author: michellecorrea2007@hotmail.com.michellecorrea2007@hotmail.com.

Sigmae, Alfenas, v.1, n.1, p. 65-83. 2012.

michellecorrea2007@hotmail.com.


Correa, Nogueira e Ferreira (2012) 66

Introduction

In practical situations, data modelling is a great challenge. There is the need to find an
appropriate distribution to describe the data that represents them in the best way. Furthermore,
we invariably want to perform some sort of inference about a bigger and unobserved population.
One of the most common assumptions of inference procedures is normality of the data, which is
not always met. Among the cases in which the data is non-normal stand out asymmetric data.
An alternative that can be used for handle asymmetric data are probability distributions that
can model this asymmetry and, if possible, have as a special case the normal distribution.

Azzalini, in 1985, has proposed the asymmetric (skew) normal distribution, comprised by
three parameters. One of those parameters (λ) is responsible for controlling the asymmetry.
Azzalini states that the asymmetric normal has some limitations, such as the flexibility of its
tail, resisting adjusting since, as the parametric value increases, this distribution tends to a
half -normal.

Oliveira (2009) states the definition and properties of the Azzalini’s skew normal distribution.
The parameter responsible for asymmetry indicates that for positive (negative) values the density
assumes positive (negative) asymmetry.

When λ = 0 we have the symmetry situation. Therefore, the standard normal distribution
is a particular case. The probability density function of the Azzalini’s skew normal is given by:

f(x|µ, σ, λ) =
2

σ
φ (x) Φ (λx) , x ∈ (−∞,∞).

where µ ∈ R is the mean or location parameter; σ2 is the variance or scale parameter; φ(.) and
Φ(.) are normal probability density function and distribution function, respectively.

The distribution function is given by

F (x|µ, σ, λ) = 2Φ2 (x|0,Ω) ,

where

Ω =

[
1 −δ
−δ 1

]
, δ =

λ√
1 + λ2

x ∈ (−∞,∞)

and Φ2(., .|0,Ω) is the cumulative bivariate normal function with null vector of means and
covariance matrix Ω.

The two parameter Kumaraswamy distribution was created by Pondi Kumaraswamy in 1980,
in applications in hydrology (KUMARASWAMY, 1980). In 2011, Cordeiro and Castro have
created a family of generalized distributions derived from the distribution initially proposed by
Kumaraswamy. Honouring this author, Cordeiro and Castro (2011) called this family of kum.
The kum family of distributions was constructed from the mixture of existing distributions, for
instance the kum-Weibull, kum-gamma and kum-normal distributions. Relating the works of
Eugene, Lee and Famoye (2002) and Jones (2004, 2008) it has been constructed a new class of
generalized kum (kum-G), and its probability density function is defined as:

f(x|θ, a, b) = abg(x)G(x)a−1 [1−G(x)a]b−1

where θ is a vector of parameters from the density g(x), G(x) is the cumulative function, a > 0
and b > 0 are additonal parameters, with the role of introducing asymmetry and varying the
weight of the tail.

From this definition of kum-G families, Cordeiro and Castro (2011) created various distri-
butions stemmed from this generalization, as mentioned, but in this study we evaluated only
its mixture to normal, called kum-normal and denoted by kumN, which has probability density
function is given by:

f(x|µ, σ, a, b) =
ab

σ
φ (x) [Φ (x)]a−1 [1− Φ (x)a]b−1 , (1)

Sigmae, Alfenas, v.1, n.1, p. 65-83. 2012.



Correa, Nogueira e Ferreira (2012) 67

where x ∈ R, a > 0, b > 0, µ ∈ R, is the location parameter (mean) and σ > 0 is the scale
parameter (standard deviation), φ(.) is the normal probability density function and Φ(.) is the
distribution function.

A random variable with density f(x) (11) is denoted as X ∼ kumN(µ, σ, a, b). For µ = 0 and
σ = 1 we obtain the standard kum-normal distribution. Furthermore, kum-normal distribution
with parameters a = 2 and b = 1 coincides with a normal distribution with asymmetric shape
parameter λ = 1. It is noticed that both the kum-normal and Azzalini’s skew normal have the
same goal of modelling the tail, ie, each with their respective parameters of asymmetry tuning.
For kum-normal two parameters are designated for the adjustment of asymmetry.

Gamlss is an R package with numerous functions and some ramifications. One of them is the
gamlss.dist, where are all probability distribution adjusted by the package. It also provides
the Akaike information criterion (AIC), the likelihood ratio test (LRT), Bayesian information
criterion (BIC), likelihood function (LF) and graphical settings, among others.

The aim of this work is to implement the kum-normal distribution proposed by Cordeiro
and Castro (2011) using the R package gamlss and verify the performance of kum-normal and
Azzalini’s skew normal on modelling asymmetry, using criteria information on the quality of fit
and likelihood ratio test. For comparison, we used a real example of grain beetles (Tribolium
cofusum) grown at 29◦C (EUGENE; LEE; FAMOYE, 2002) and simulated data, generated
from the distribution created by Tukey, called g and h, with increasing levels of asymmetry.
Everything was done using R (R Development Core Team, 2011). The partial derivatives of the
log-likelihood function of kum-normal were obtained for its implementation using the package
gamlss (STASINOPOULOS; RIGBY, 2007).

In the second section we present the methodology used in this study, as well as the genera-
lization of the normal distribution function to find the partial derivatives for implementation of
kum-normal distribution, the real data and data from g and h distribution, tests for normality,
information criteria and likelihood ratio test used to compare the distributions.

The results obtained with the implementation and comparison of the distributions are dis-
cussed in the third section, the conclusions presented in section four and the implementation of
the kum-normal distribution is is the appendix.

Methodology

The kum-normal likelihood function is generated by the generalization of the generalized
kum distributions proposed by Cordeiro e Castro (2011). They used, as base distribution, the
probability density functions and cumulative functions.

Let θ be the p-dimensional vector of parameters. Let X1, . . . , Xn random variables from the
kum-normal distribution with vector of parameters θ = (a, b, µ, σ). The log-likelihood function
S = ln[L(θ)] is set as follows:

SKN = n {ln(a) + ln(b)}+

n∑
i=1

ln[φ(xi)] + (a− 1)

n∑
i=1

ln [Φ(xi)] +

+ (b− 1)
n∑
i=1

ln [1− Φ(xi)
a] (2)

Then, the partial derivatives can be written as

∂SKN
∂a

=
n

a
+

n∑
i=1

ln [Φ(xi)]

[
1− (b− 1)Φ(xi)

a

1− Φ(xi)a

]
, (3)
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∂SKN
∂b

=
n

b
+

n∑
i=1

ln [1− Φ(xi)
a] , (4)

∂SKN
∂µ

=
n∑
i=1

[
1

φ(xi)

∂φ(xi)

∂µ
+

1

Φ(xi)

∂Φ(xi)

∂µ

(
1− a(b− 1)

Φ(xi)−a − 1

)]
, (5)

∂SKN
∂σ

=
n∑
i=1

[
1

φ(xi)

∂φ(xi)

∂σ
+

1

Φ(xi)

∂Φ(xi)

∂σ

(
1− a(b− 1)

Φ(xi)−a − 1

)]
. (6)

From the equations above the maximum likelihood estimators can be obtained. Furthermore,
partial derivatives of the kum-normal density are needed for programming it in the gamlss
package. However, they are not straightforward obtaining, mainly due to the normal cumulative
function. Eugene, Lee and Famoye (2002) used the following generalizations for such derivatives:

∂Φ(x)

∂µ
=
−φ(x)

σ

and
∂Φ(x)

∂σ
= −

(
x− µ
σ2

)
φ(x)

From them, all the second and mixed derivatives from kum-normal were derived.
The insertion of kum-normal distribution in package gamlss was performed substituting a

distribution which contained the same number of parameters, following the guidelines of Rigby
and Stasinopoulos (2007). Thus, kum-normal distribution can be part of the family of probability
distributions implemented in the package, allowing use of resources already programmed.

Fitting

Fitting distributions was made in two situations. First random values were simulated from h
and g distribution. This distribution has some facility generating asymmetric values, controlling
a parameter.

The g and h distribution been suggested by John Wilder Tukey in 1977, and discussed by
Hoaglin and Peters (1979) and Hoaglin (1983). It has a great flexibility in modelling, contains
only two parameters (g, h), where g controls asymmetry and h models the weight of the tail.
This distribution is defined in terms of the quantile function of the standard normal distribution:

f(Z|g, h) =
exp(gZ − 1)

g
exp

(
h

2
Z2

)
where Z is the p-th quantile of the standard normal distribution. Thus, f(Z|g, h) is its probabi-
lity density function with parameters g ∈ (−1, 1) and h ∈ (0, 1). A particular case for the g and
h distribution with g = 0 and h = 0, is the standard normal distribution. The g and h density
is derived taking the numeric derivative of the cumulative function.

Values generated from this distribution were split by degree of asymmetry. To generate such
data, we used the function rgh (random) for generating vectors containing 100 random values.
For each configuration, the g parameter was used as an asymmetry scale, set to the values: 0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1; and h was set to only two values, 0 and 0.2. Thus,
21 simulated cases were performed with 10 levels of asymmetryiiii.

iiThe set g = 0 and h = 0.2 was not performed.
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The second situation was fitting real data - regarding the number adults of Tribolium cofu-
sum iiiiii, grown at 29oC (CONSTANTINO; DESHARNAIS, 1981).

According to Constantino and Desharnais (1981), the experiment started placing a container
with flour and some young adults beetles, who were kept in incubators in a range of 14 to 30
days. After that period the number of beetles and stages of life were computed. This procedure
was repeated during a year and a half to two and a half years, until they reach an adult age or
reaches a stationary phase. Thus, they were counted to generate such a frequency distribution
that has a degree of asymmetry to the right. Eugene Lee and Famoye (2002) also used these
same data for studies about asymmetric distributions.

Asymmetry tests and comparison criteria

To make the comparison between distributions, first we performed tests to verify the nor-
mality and symmetry to ensure that the simulated data from the h and g distribution - and the
real data - were statistically asymmetric.

For such verification we performed the Shapiro-Wilk (FERREIRA, 2009) test, to confirm
the data does not follow a normal distribution. Following test we used the test of D’Agostino
(D’Agostino, 1978) that verifies if the asymmetry parameter is zero. Both are implemented in R,
where the Shapiro-Wilk (shapiro.test()) is part of the basic package and test of D’Agostino
(agostino.test()) is part of the package moments.

To compare the fittings we used the likelihood ratio test and to select the best fit we used
AIC and BIC information criteria. The likelihood ratio test (CASELLA; BERGER, 2010) was
performed to compare what distribution, kum-normal or Azzalini’s skew normal, best fits the
simulated data, according to the degree of asymmetry. Floriano et al. (2006) claim that the AIC
(AKAIKE, 1973) and BIC (SCHWARZ, 1978) are the main criteria used in the comparison of
models in computer programs. They are based on the likelihood value of the model and on the
number of observations and the number of parameters thereof. It is assumed here that we have
nested models, although BIC can also be used in comparison of non-nested models, according
to Schwarz (1978).

Results and discussion

Second and mixed derivatives of kum-normal distribution were obtained from the log-likeliho-
od function (22) proposed by Cordeiro and Castro (2011). Those derivatives are of great impor-
tance, since they are needed in the construction of kum-normal distribution and likelihood,
through the their implementation in the package gamlss.dist. Due to notation facility, we
cal φ(x) = φ the normal probability density function and Φ(x) = Φ the normal cumulative
function.

∂S2
(KN)(θ)

∂µ2
=

(
−1

σ2

)
−
[

Φφ+ φ2

(Φσ)2

]
+

[
(Φσ)(Φ−a − 1)(ab− a)

(x−µ
σ2

)
φ

[(Φσ)(Φ−a − 1)]2

]
−

−
[
φ(ab− a)(φ− φΦ−a − σaΦ−a)

[(Φσ)(Φ−a − 1)]2

]
. (7)

∂S2
(KN)(θ)

∂σ2
=

[
1

σ2

]
−

(Φσ)(x− µ)φ
(
(x−µ)2
σ2 − 1

)
+ 2φΦσ(x− µ)− φ2(x− µ)2

(Φσ2)2

+

iiiBeetles that attack stored grains.
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+

[
−3(x− µ)2

σ4

]
+

(Φσ2)(Φ−a − 1)(ab− a)(x− µ)φ
(
(x−µ)2
σ3 − 1

σ

)
[(Φσ2)(Φ−a − 1)]2



−
[
φ(x− µ)(ab− a)(2σΦ1−a − Φ−aφ(x− µ)− aσ2Φ−a − 2Φσ + (x− µ)φ)

[(Φσ2)(Φ−a − 1)]2

]
. (8)

∂S2
(KN)(θ)

∂µ∂σ
=

[
−2(x− µ)

σ3

]
−

Φφ
(
(x−µ)2
σ2 − 1

)
φΦ + φ2

(x−µ
σ

)
(Φσ)2

+

+

(Φσ)(Φ−a − 1)(ab− a)φ
(
(x−µ)2
σ3 − 1

σ

)
[(Φσ)(Φ−a − 1)]2

−

−

φ(ab− a)
[
Φ−a

(
Φ− φ(x−µ)

σ

)
− aσΦ−a − Φ + φ (x−µ)

σ

]
[(Φσ)(Φ−a − 1)]2

 . (9)

∂S2
(KN)(θ)

∂µ∂a
=

[
(Φσ)(Φ−a − 1)φ(b− 1) + φ(ab− a)(Φ1−a)σ ln(Φ)

[(Φσ)(Φ−a − 1)]2

]
. (10)

∂S2
(KN)(θ)

∂µ∂b
=

φa

(Φσ)(Φ−a − 1)
. (11)

∂S2
(KN)(θ)

∂σ∂a
=

(Φσ2)(Φ−a − 1)φ(x− µ)(b− 1) + φ(x− µ)(ab− a)(Φ1−a) ln(Φ)σ2

[(Φσ2)(Φ−a − 1)]2
. (12)

∂S2
(KN)(θ)

∂σ∂b
=

φa(x− µ)

(Φσ2)(Φ−a − 1)
. (13)

∂S2
(KN)(θ)

∂a2
=

(
−1

a2

)
− ln(Φ)

[
(b− 1) ln(Φ)Φa

(1− Φa)
+

(b− 1)(Φ2a) ln(Φ)

(1− Φa)2

]
. (14)

∂S2
(KN)(θ)

∂a∂b
= − ln(Φ)Φa

1− Φa
. (15)

∂S2
(KN)(θ)

∂b2
= − 1

b2
. (16)
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The implementation of kum-normal was performed in the package gamlss replacing a distri-
bution of four parameters already implemented. To use the distribution of its properties just
load the package functions rKumN, qKumN, dKumN and pKumN for random number generation,
quantile function, density function and probability function, respectively. See Appendix for R
routines.

Figure 11 shows the probability distribution function of kum-normal, for a scene with para-
meters µ = 10, σ = 2, a = 2 and b = 1, showing the shape of the distribution in according to
the implemented functions.

Figure 1: Kum-Normal distribution, µ = 10, σ = 2, a = 2, b = 1.

Comparing distributions

Data simulated from the h and g distribution, setting h = 0 and varying the parameter g,
were exposed to Shapiro-Wilk and D’Agostino tests. The p-values and estimates of asymmetry
are shown in Table 11.

Observing Table 11 we note that the p-values in scene r0, for Shapiro-Wilk and D’Agostino
tests, are greater than 5%, ie the simulated data follow a normal distribution and therefore are
symmetrical. It happens due the definition of h and g distribution under the such parametric
values. For the other scenarios, the p-values are less the level of significance for both tests,
characterizing asymmetric distributions. It is worth noting also the increase of the degree of
asymmetry while increases the g parameter.

Table 22 presents the results of information criteria and likelihood ratio test for each simulated
scenario, for both kum-normal and Azzalini’s skew normal.

Note in 22 that in the first two scenarios the likelihood ratio test confirms the equality of the
fitting for both models. That occurred because, in those scenes, the asymmetry was not well
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Table 1: Results for the normality tests and estimates of asymmetry of the data simulated from
the g and h distribution

Scenes Shapiro-Wilk D’Agostino Asymmetry level
p-value p-value

r0(0.0; 0) 6.7× 10−1 9.8× 10−1 0.007
r1(0.1; 0) 8.0× 10−3 4.5× 10−2 0.771
r2(0.2; 0) 4.5× 10−12 1.0× 10−2 1.056
r3(0.3; 0) 1.2× 10−5 4.0× 10−2 1.225
r4(0.4; 0) 2.3× 10−8 3.0× 10−4 1.687
r5(0.5; 0) 1.2× 10−8 2.0× 10−4 1.784
r6(0.6; 0) 9.2× 10−11 1.0× 10−4 1.887
r7(0.7; 0) 2.8× 10−10 9.4× 10−5 1.940
r8(0.8; 0) 1.2× 10−12 2.2× 10−5 2.235
r9(0.9; 0) 1.3× 10−13 4.1× 10−6 2.596
r10(1.0; 0) 3.3× 10−13 1.9× 10−6 2.765

Table 2: Results of the information criteria (AIC and BIC) and likelihood ratio test (LRT) for
kum-normal (KumN) and asymmetric normal (AN)

Scenes Distribution AIC BIC LRT
p-value

r0(0.0; 0) KumN 304.53 314.95 0.259
AN 303.81 311.63

r1(0.1; 0) KumN 277.30 287.72 0.532
AN 275.69 283.50

r2(0.2; 0) KumN 299.62 310.04 0.014
AN 303.63 311.45

r3(0.3; 0) KumN 270.06 280.48 0.039
AN 272.32 280.12

r4(0.4; 0) KumN 357.37 397.79 0.006
AN 362.79 370.61

r5(0.5; 0) KumN 325.53 335.95 0.011
AN 330.01 337.82

r6(0.6; 0) KumN 377.90 388.32 0.008
AN 382.76 390.57

r7(0.7; 0) KumN 321.86 332.28 0.007
AN 327.20 335.08

r8(0.8; 0) KumN 409.49 419.91 0.003
AN 416.37 424.19

r9(0.9; 0) KumN 402.32 412.74 0.012
AN 406.66 414.47

r10(1.0; 0) KumN 347.35 357.77 1.6× 10−12

AN 395,24 403,06

established. Despite the test of D’Agostino characterize the presence of asymmetry parameter
(table 11) as significant in scenario r1 the distributions also showed no significant differences in
adjustment, which confirms similar fitting in situations of none or low degree of asymmetry.

Regarding the other scenarios, the likelihood ratio test detected difference in fitting distri-
butions to the data. The information criteria were used to determine the best fitting model.
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Note that the values of AIC for kum-normal are less than the values for the asymmetric normal
in all scenarios. Therefore the kum-normal best fitted all cases where the degree of asymmetry
was higher. There was some disagreement in the scenarios r3, r4, r12 and r14 in relation to the
information criteria, but preference was given to the AIC results.

Figure 2: Graphic representations under estimated asymmetry of 0.007 for KumN (−0.87; 0.15;
0.58; −0.27) and AN (−0.08; 0.07; 0.03).

Figure 3: Graphic representations under estimated asymmetry of 0.771 for KumN (−0.36; 6.7×
10−6; 0.16; −0, 55) and AN (0.22; 0.20; −0.01).

Figure 4: Graphic representations under estimated asymmetry of 0.0839 for KumN (−3.65; 0.64;
3.05; −0.60) and AN (0.49; 0.52; −0.01).
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Figures 22, 33 and 44 show the graphs for scenes r0, r5 and r10. The histogram displays the
simulated values and the density, adjusted according to the estimated parameters. It appears
that the adjustment for the two simulated cases exhibit similar behaviours. Visually we can see
a slight difference in the estimation of the mean. Kum-normal presents lower estimates for the
average while Azzalini’s skew normal presents characteristics of a standard normal, ie estimate
of λ close to zero.

Table 33 brings the test results to verify the simulated data with respect to normality and
asymmetry.

These data were generated with h set to 0.2, simulating a distribution with heavier tails,
differentiating a little bit more the asymmetric form.

Table 3: Results for the normality tests and estimates of asymmetry of the data simulated from
the g and h distribution

Scenes Shapiro-Wilk D’Agostino Asymmetry level
p-value p-value

r11(0.1; 0.2) 2.0× 10−3 3.7× 10−2 0.839
r12(0.2; 0.2) 4.0× 10−4 2.2× 10−2 0.905
r13(0.3; 0.2) 2.0× 10−6 3.0× 10−3 1.240
r14(0.4; 0.2) 3.9× 10−8 1.0× 10−3 1.350
r15(0.5; 0.2) 4.0× 10−7 9.0× 10−4 1.500
r16(0.6; 0.2) 7.3× 10−9 4.0× 10−4 1.630
r17(0.7; 0.2) 4.9× 10−9 3.0× 10−4 1.720
r18(0.8; 0.2) 4.3× 10−10 2.0× 10−4 1.800
r19(0.9; 0.2) 1.6× 10−8 2.0× 10−4 1.820
r20(1.0; 0.2) 3.0× 10−12 2.0× 10−4 1.840

Results of the Shapiro-Wilk test presented in Table 33 indicate that the null hypothesis that
the data follow a normal distribution should be rejected, with p-values ranging from 4.3× 10−10

to 0.002. The test of D’Agostino also presents significance, indicating that the data follow a
skewed distribution. P-values vary from 0.0009 to 0.037.

Figure 5: Graphic representations under estimated asymmetry of 1.84 for KumN (0.31; 0.96;
0.37; −0.06) and AN (1.18; 0.90; −0.04).

Figure 55 presents the histogram and the fit of each distribution to the data, with increasing
values of asymmetry. The fittings were considered different, where the kum-normal distribution
has the best fit. It can be seen that although the kum-normal presents the a better fit there
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are limitations on the shape of both distributions. In a visual evaluation, the dependence of
normality seems to prevent the distributions to follow the format of the histogram peaks. In
this study we did not consider the quality of fit but the comparison between them.

Table 44 shows the result of the comparison between distributions, highlighting the informa-
tion criteria and likelihood ration test results.

Table 4: Comparison between distributions kum-normal (KumN) and Azzalini’s asymmetric
normal (AN) for scenes from r11 to r20

Scene Distribution AIC BIC LRT
p-value

r11(100; 0.1; 0.2) KumN 283.332 293.753 0.019
AN 286.809 294.624

r12(100; 0.2; 0.2) KumN 316.109 326.529 0.039
AN 318.351 326.167

r13(100; 0.3; 0.2) KumN 368.655 379.076 0.021
AN 371.947 379.763

r14(100; 0.4; 0.2) KumN 349.409 359.829 0.033
AN 351.953 359.768

r15(100; 0.5; 0.2) KumN 366.629 377.05 0.011
AN 371.096 378.912

r16(100; 0.6; 0.2) KumN 387.885 398.306 0.006
AN 393.481 401.297

r17(100; 0.7; 0.2) KumN 353.051 363.472 0.003
AN 360.177 367.993

r18(100; 0.8; 0.2) KumN 430.477 440.898 0.009
AN 435.269 443.084

r19(100; 0.9; 0.2) KumN 398.582 409.002 0.010
AN 403.139 410.954

r20(100; 1.0; 0.2) KumN 467.846 478.266 0.028
AN 470.689 478.505

It can be seen in Table 44 that the p-values range from 0.003 to 0.039, confirming the difference
between distributions’ fittings. Thus, according to the likelihood ratio test, we can say that the
fittings are different between the distributions, for those scenes, at 5% of significance. Analyzing
the information criteria, the values of the AIC for kum-normal values are smaller than the one
for Azzalini’s asymmetric normal, in all cases. So kum-normal distribution fitted better for
scenes from r11 to r20.

Regarding the comparison between the distributions, the kum-normal best fit at 90.9% of
the simulated cases. Only in the scenarios r0 and r1 - with a low degree of asymmetry - the
Azzalini’s skew normal performed best.

Real data modelling

The real data used here refer to the number of adults of Tribolium cofusum grown at 29◦C.
Such data set is asymmetric, with a long tail to the right.

Table 55 presents the results of Shapiro-Wilk and D’Agostino tests and the asymmetry level
of the data.

It can be seen in Table 55 that the p-values are all significant at 5%, confirming the lack of
normality and symmetry, indicating an asymmetry to the right of 0.8.

Table 66 presents the results for the information criteria and likelihood ratio test.
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Table 5: Results for the normality tests and estimates of asymmetry of the real data set
Shapiro-Wilk D’Agostino Asymmetry level

p-value p-value

8.04× 10−16 3.6× 10−7 0.80

Table 6: Comparing the distributions in relation to the real data
Distribution AIC BIC LRT

p-value

KumN 7266.54 7284.68 0.225
AN 7266.01 7279.62

Analysing Table 66, through the likelihood ratio test, the hypothesis of equality of fittings
should not be rejected at 5% of significance. Thus, distributions showed the same fitting capacity.
In the simulated case r2 (Table 22), the estimation of asymmetry was also 0.8, and the result
confirms the presented adjustment.

From Figure 66 we can see similar fittings and similar parameter estimates from both distri-
butions.

Figure 6: Graphic representations under estimated asymmetry of 0.80 for KumN (139; 3.8; 0.04;
−0.014) and AN (139.7; 3.8; 0.004).

Conclusions

Second and mixed derivatives were obtained enabling the implementation of kum-normal
distribution in the package gamlss R.

The kum-normal distribution proved to be effective in adjusting asymmetric data as much
as the Azzalini’s skew normal distribution. As the level of asymmetry increases the kum-normal
distribution shows better fitting than the asymmetric normal.

For the real data, distribution kum-normal and normal asymmetric had the same fitting
quality.
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Appendix

Kum-normal distribution source code

library("gamlss")
KumN = function(mu.link="identity", sigma.link="log", nu.link ="log",
tau.link="log"){
mstats=checklink("mu.link","kumaraswamy-Normal",substitute(mu.link),

c("$1/muˆ2$", "log", "identity"))
dstats = checklink("sigma.link", "kumaraswamy-Normal", substitute

(sigma.link), c("inverse", "log", "identity"))
vstats=checklink("nu.link","kumaraswamy-Normal",substitute(nu.link),

c("$1/nuˆ2$", "log", "identity"))
tstats=checklink("tau.link","kumaraswamy-Normal",substitute(tau.link),

c("$1/tauˆ2$", "log", "identity"))
structure (
list(family = c("KumN", "kumaraswamy-Normal"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE),
nopar = 4,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
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#dldm: First derivative of eq. (22) in relation to µ (eq. 55)

dldm = function(y, mu, sigma, nu, tau) {
d = dnorm(y, mu, sigma)
p = pnorm(y, mu, sigma)
n = (nu*tau-nu)
dfdm = (d*(y-mu)/sigmaˆ2)
dpdm = (-d/sigma)
dldm = ((1/d)*( dfdm)+(1/p)*(dpdm)*(1-(n/((pˆ(-nu))-1))))

},

#d2ldm2: Second derivative of eq. (22) in relation to µ (eq. 77)

d2ldm2 = function(y, mu, sigma, nu, tau){
d = dnorm(y, mu, sigma)
p = pnorm(y, mu, sigma)
n = (nu*tau-nu)
C = ((p*sigma*((pˆ(-nu))-1))ˆ2)
A = ((sigma*p*((pˆ(-nu))-1)*n*(d*(y-mu)/(sigmaˆ2)))/ C )
B = ((d*n*(d-d*(pˆ(-nu))-sigma*nu*(pˆ(-nu))))/ C )
d2ldm2=(-1/sigmaˆ2)-((p*d*((y-mu)/sigma)+dˆ2)/((p*sigma)ˆ2))+A-B

},

#dldd: First derivative of eq. (22) in relation to σ (eq. 66)

dldd = function(y, mu, sigma, nu, tau) {
d = dnorm(y, mu, sigma)
p = pnorm(y, mu, sigma)
n = (nu*tau-nu)
dpdd = ((-(y-mu)*d)/(sigmaˆ2))
dfdd = (d*((((y-mu)ˆ2)/sigmaˆ3)-(1/sigma)))
dldd = (1/d)*(dfdd)+((1/p)*dpdd*(1-(n/((pˆ(-nu))-1))))

},

#d2ldd2: Second derivative of eq. (22) in relation to σ (eq. 88)

d2ldd2 = function(y, mu, sigma, nu, tau) {
p=pnorm(y, mu, sigma)
d=dnorm(y, mu, sigma)
n=( nu*tau - nu)
G=(((y-mu)ˆ2)/sigmaˆ3)
E=(p*(sigmaˆ2)*((pˆ(-nu))-1)*n*(y-mu)*d*(G-(1/sigma)))
A=E/(((p*(sigmaˆ2))*((pˆ(-nu))-1))ˆ2)
H=((pˆ(-nu))*d*(y-mu))
B=(d*n*(y-mu)*((2*sigma*(pˆ(1-nu)))-H-(nu*(sigmaˆ2)*(pˆ{(-nu)})))-F)
F=((2*sigma*p)+((y-mu)*d))
C=(((p*(sigmaˆ2))*((pˆ(-nu))-1))ˆ2)
D=(((2*d*(y-mu)*sigma*p)-((dˆ2)*((y-mu)ˆ2)))/((p*(sigmaˆ2))ˆ2))
G=((p*sigma*(y-mu)*d*((((y-mu)ˆ2)/sigmaˆ2)-1))/(p*(sigmaˆ2))ˆ2)
d2ldd2=(-3*((y-mu)ˆ2)/sigmaˆ4)+(1/sigmaˆ2)-G+D+A-B/C

},
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#dldv: First derivative of eq. (22) in relation to a (eq. 33)

dldv = function(y, mu, sigma, nu, tau) {
p = pnorm(y, mu, sigma)
dldv = (1/nu)+(\log(p))*(1-(((tau-1)*(pˆnu))/(1-(pˆnu))))

},

#dldv2: Second derivative of eq. (22) in relation to a (eq. 1414)

d2ldv2 = function(y, mu, sigma, nu, tau) {
p = pnorm(y, mu, sigma)
A = (((tau-1)*\log(p)*(pˆnu))/(1-(pˆnu)))
B = (((tau-1)*\log(p)*(pˆ(2*nu)))/(1-(pˆnu))ˆ2)
d2ldv2 = (-1/(nuˆ2))-(\log(p))*( A + B)

},

#dldt: First derivative of eq. (22) in relation to b (eq. 44)

dldt = function(y, mu, sigma, nu, tau) {
p = pnorm(y, mu, sigma)
dldt = (1/tau)+\log(1-(pˆnu))

},

#d2dt: Second derivative of eq. (22) in relation to b (eq. 1616)

d2ldt2 = function(y, mu, sigma, nu, tau) {
d2ldt2 = (-(1/(tauˆ2)))

},

#d2ldmdd: Mixed derivative of eq. (22) in relation to µ and σ (eq. 99)

d2ldmdd = function(y, mu, sigma, nu, tau){
d=dnorm(y, mu, sigma)
p=pnorm(y, mu, sigma)
n=(nu*tau-nu)
E=(d*n*((pˆ(-nu))
A=E*(p-((y-mu)/sigma)*d-((pˆ(-nu))*sigma*nu)-p+((y-mu)/sigma)*d)
F=((p*sigma*((pˆ(-nu))-1))ˆ2)
B=((p*sigma*((pˆ(-nu))-1)*n*d*((((y-mu)ˆ2)/(sigmaˆ3))-(1/sigma)))/F)
C=(A/(((p*sigma)*((pˆ(-nu))-1))ˆ2))
D=(-2*(y-mu)/sigmaˆ3)
G=((((y-mu)ˆ2)/sigmaˆ2)-1)
d2ldmdd=D-((p*d*G-(d*p)+(dˆ2)*((y-mu)/sigma))/(p*sigma)ˆ2)+B-C

},

#d2ldmdv: Mixed derivative of eq. (22) in relation to µ and a (eq. 1010)

d2ldmdv = function(y, mu, sigma, nu, tau){
d = dnorm(y, mu, sigma)
p = pnorm(y, mu, sigma)
n = (nu*tau-nu)
A = (p*sigma*((pˆ(-nu))-1)*d*(tau-1))

d2ldmdv=(A+(d*n*sigma*\log(p)*(pˆ(1-nu))))/((p*sigma*((pˆ{(-nu)})-1))ˆ2)
},
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#d2ldmdt: Mixed derivative of eq. (22) in relation to µ and b (eq. 1111)

d2ldmdt = function(y, mu, sigma, nu, tau){
d = dnorm(y, mu, sigma)
p = pnorm(y, mu, sigma)
d2ldmdt = (nu*d)/(p*sigma*((pˆ(-nu))-1))

},

#d2ldddv: Mixed derivative of eq. (22) in relation to σ and a (eq. 1212)

d2ldddv = function(y, mu, sigma, nu, tau) {
p = pnorm(y, mu, sigma)
n = (nu*tau-nu)
d = dnorm(y, mu, sigma)
A = (p*(sigmaˆ2)*((pˆ(-nu))-1)*d*(y-mu)*(tau-1))
B = ((p*(sigmaˆ2)*((pˆ(-nu))-1))ˆ2)
d2ldddv = (A+(d*(y-mu)*n*(pˆ(1-nu))*\log(p)*(sigmaˆ2)))/B

},

#d2ldddt: Mixed derivative of eq. (22) in relation to σ and b (eq. 1313)

d2ldddt = function(y, mu, sigma, nu, tau) {
p = pnorm(y, mu, sigma)
d = dnorm(y, mu, sigma)
n = (nu*tau-nu)
d2ldddt = (d*(y-mu)*nu)/(p*(sigmaˆ2)*((pˆ(-nu))-1))

},

#d2ldvdt: Mixed derivative of eq. (22) in relation to a and b (eq. 1515)

d2ldvdt = function(y, mu, sigma, nu, tau){
p = pnorm(y, mu, sigma)
d2ldvdt = (-(\log(p)*(pˆ(nu)))/(1-(pˆ(nu))))

},
G.dev.incr = function(y, mu, sigma, nu, tau,...)

-2*dKumN(y, mu, sigma, nu, tau, \log=TRUE),
rqres = expression (
rqres(pfun = "pKumN", type="Continuous", y=y, mu=mu,
sigma=sigma, nu=nu, tau=tau) ),
mu.initial = expression(mu = (y+mean(y))/2),
sigma.initial = expression(sigma = rep(sd(y), length(y))),
nu.initial = expression(nu = rep(1, length(y))) ,
tau.initial = expression(tau = rep(0.5, length(y))) ,
mu.valid = function(mu) TRUE,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0),
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) TRUE),
class = c("gamlss.family","family")) }
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# Kum-normal probability density function

dKumN=function(y, mu=0, sigma=1, nu=2, tau=1, \log=FALSE) {
if(any(sigma<0)) stop(paste("sigma must be positive", "\ n", ""))
if(any(tau<0)) stop(paste("tau must be positive", "\ n", ""))
if(any(nu<0)) stop(paste("nu must be positive", "\ n", ""))
p=pnorm(y, mu, sigma)
f = (1/(sqrt(2*pi*sigmaˆ2))*exp(-0.5*((y-mu)/sigma)ˆ2))
loglik=\log(nu)+\log(tau)+\log(f)+(nu-1)*\log(p)+(tau-1)*\log(1-(pˆ(nu)))
if(log==FALSE) ft = exp(loglik) else ft = loglik
ft
}

# Kum-normal distribution function

pKumN=function(q, mu=0, sigma=1, nu=2, tau=1,
lower.tail = TRUE, \log.p = FALSE) {
if(any(sigma<0)) stop(paste("sigma must be positive", "\ n", ""))
if(any(tau<0)) stop(paste("tau must be positive", "\ n", ""))
if(any(nu<0)) stop(paste("nu must be positive", "\ n", ""))
p=1-(1-(pnorm(q, mu, sigma))ˆnu)ˆtau
if(lower.tail==TRUE) p = p else p = 1-p
if(log.p==FALSE) p = p else p=- \log(p)
p
}

# Kum-normal quantile function

qKumN=function(p, mu=0, sigma=1, nu=2, tau=1,lower.tail=TRUE,
log.p=FALSE, lower.limit=mu-10*(sigma/(nu*tau)),
upper.limit = mu+10*(sigma/(nu*tau)) ){
h1 = function(q) {
pKumN(q, mu=mu[i], sigma=sigma[i], nu=nu[i], tau=tau[i])-p[i]}
h = function(q) {
pkumN(q, mu=mu[i], sigma=sigma[i], nu=nu[i], tau=tau[i])}
if(any(sigma<=0))
stop(paste("sigma must be positive", "\ n", ""))
if(\log.p == TRUE)
p = exp(p)
else p = p
if(lower.tail==TRUE)
p = p
else p = 1 - p
if (any(p < 0) any(p > 1))
stop(paste("p must be between 0 and 1", "\ n", ""))
lp = max(length(p), length(mu), length(sigma), length(nu), length(tau))
p = rep(p, length = lp)
sigma = rep(sigma, length = lp)
mu = rep(mu, length = lp)
nu = rep(nu, length = lp)
tau = rep(tau, length = lp)
q = rep(0, lp)
for(i in seq(along = p)) {
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if(h(mu[i]) < p[i]) {
interval = c(mu[i],mu[i] + sigma[i])
j = 2
while (h(interval[2]) < p[i]) {
interval[2] = mu[i] + j *sigma[i]
j = j + 1 }
}
else {
interval = c(mu[i] - sigma[i], mu[i])
j = 2
while(h(interval[1]) > p[i]) {
interval[1] = mu[i] - j * sigma[i]
j = j + 1$ } }
q[i] = uniroot(h1, interval) \ root
} q }

# Kum-normal random data generating function

rKumN=function(n, mu=0, sigma=1, nu=2, tau=1) {
if(any(sigma<=0)) stop(paste("sigma must be positive", "\ n", ""))
if(any(tau<0)) stop(paste("tau must be positive", "\ n", ""))
if(any(nu<0)) stop(paste("nu must be positive", "\ n", ""))
n = ceiling(n)
p = runif(n)
r = qKumN(p, mu=mu, sigma=sigma, nu=nu, tau=tau)
}
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