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Del-Rei (DEMAT/UFSJ).
2Programa de Pós-graduação em Estat́ıstica e Experimentação Agronômica, Departamento de Ciências
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Abstract: The Ames test is a widely used, short-term mutagenicity assay for environmental
and human health risk assessment and its results are usually expressed by means of a simplistic
measure, namely the mutagenicity index (MI). In this study, we aimed at evaluating its statisti-
cal properties, its advantages and disadvantages (point and interval estimation performances) in
comparison to three new, similar measures (MIm, M̃I and M̃Im). We used computer simulations
of realistic, protocol-recommended scenarios, and illustrated our methods with an observed, real
dataset. Our major findings are the following: (i) all four measures are generally unbiased;
(ii) both bias and variance raises with overdispersion; and (iii) only the MIm is guaranteed to
meet the nominal confidence level in interval estimation. Along with other recommendations, we
present a discussion on the implications of the misuse of any these indices.
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Resumo: O teste de Ames é um ensaio biológico amplamente utilizado e de curto prazo para
avaliação de riscos ambientais e de saúde, cujos resultados são geralmente expressado por meio
de uma medida simplista, s saber, o ı́ndice de mutagenicidade (MI). Neste estudo, nosso objetivo
foi avaliar as propriedades estat́ısticas desse ı́ndice, suas vantagens e desvantagens (desempen-
hos de estimação pontual e intervalar) em comparação a outras três novas medidas similares
(MIm, M̃I e M̃Im). Utilizamos simulações em computador de cenários realistas seguindo os
protocolos de aplicação comumente adotados, e ilustramos nossos métodos com um conjunto
de dados reais. Nossos principais resultados foram: (i) todas os quadro ı́ndices são em geral
não-viesados; (ii) tanto o viés como a variância aumenta com a superdispersão; e (iii) apenas
MIm garantiu o alcance do ńıvel nominal de confiança na estimação intervalar. Em conjunto a
outras recomendações, apresentamos uma discussão de posśıveis consequências em situações em
que esses ı́ndices forem mal utilizados.
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Introduction

The Salmonella/microsome assay, also known as Ames Test (AT) (Ames et al. 1973a; Ames
et al. 1973b), is a widely accepted experimental procedure in the scientific community, due to
its relatively low cost and to its simplicity and readiness of results. Although several statistical
models are available for AT data (see Kim and Margolin (1999) for a comprehensive review on
this issue), the mutagenicity index (MI) is perhaps the most used measure whenever biologists
are in charge of performing the assay, analyzing its results and, sometimes, even compare the
mutagenic effects of different substances.

The formula for computing the MI is

MIk =

1

nk

∑nk
j=1 ykj

1

n0

∑n0
i=1 y0i

=
ȳk
ȳ0
, (1)

where nk is the number of replicates used for the k-th dose, n0 is the number of replicates used
for the negative control, ykj is the number of revertants observed in the j-th replicate of the k-th
dose and y0i is the number of revertants observed in the i-th replicate of the negative control.

Despite its popularity, using the MI in Equation (11) has a few downsides researchers often
neglect. Firstly, we must assume that the substance of interest is non-toxic in the chosen doses
(or concentrations) for the assay in order to successfully use the MI. Furthermore, a common
phenomenon that arises whenever dealing with count data is known as overdispersion (Edler
1992; Hinde and Demétrio 1998; Molla and Muniswamy 2012), which, when unaddressed, may
further compromise both point and interval estimators of the MI.

More importantly, perhaps, is that the MI statistical behavior is questionable due to the
small number of experimental units suggested by AT protocols (Mortelmans and Zeiger 2000;
OECD 1997; Umbuzeiro et al. 2009). Since the early works of Katz (1978, 1979), who proposed
test statistics and minimal sample sizes using an asymptotic theoretical approach, the scientific
community is already aware that effectively detecting the 2- or 3-fold rules for mutagenesis in
Salmonella is mostly impractical (see Cariello and Piegorsch (1996) for exact error rates of such
measures).

Said statistical flaws and misuses of the MI are closely related to type-I and type-II errors
(respectively, the probability of rejecting a true hypothesis and the probability of not rejecting a
false one) and may lead to very serious, practical implications, such as human and environmental
risks. Especially, these may be the cases encountered where the observed MIs point to either
weakly positive or negative mutagenic effects, according to the researchers’ fold rule criterion
(see, for instance, the works of Akhtar et al. (2016), Barbee et al. (1996), Gupta et al. (2014),
López et al. (1999), Romero et al. (1997) and of Takemura et al. (2010)).

Thus, given the importance of the MI for environmental and human health risk assessment,
its constant misuses and eventual simply plain wrong interpretations, we aimed at deriving
similar, alternative measures to the MI, and at evaluating the performances of point and in-
terval estimation of the usual MI and of these modified measures, under realistic scenarios of
overdispersion and sampling effort. We also provided a short data analysis to illustrate our
results.
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Methods

In order to evaluate the statistical performance of the MI, we performed computer simulations
using Monte Carlo methods, under realistic, protocol-recommended laboratory scenarios. We
carried out all simulations in the R software (R CORE TEAM, 2015). The details of our
procedures are presented below.

Since we suspected that the MI may be a problematic measure, we derived a modification,
namely the modified mutagenicity index (MIm), whose formula for the k-th dose used in an
assay is given by

MImk =
1

n0nk

n0∑
i=1

nk∑
j=1

ykj
y0i

(2)

where n0, nk, y0i and ykj are the same quantities as those described for Equation (11). The index
in Equation (22) emerges naturally whenever dealing with ratios of unpaired observations and,
thus, we included the MIm in our simulations along with the usual MI. One often computes a
confidence interval (CI) for an observed MI value using the normal-theory approach.

Nevertheless, due to the count nature of the response variable (or proportions of such counts)
and to the rather small sample sizes, said asymptotic approximations are hardly met in practice.
Thus, in order to overcome these issues with simple normal CIs, we applied nonparametric
bootstrap and jackknife methods for bias correction and both, normal and percentile-based,
bootstrap confidence intervals (Efron and Tibshirani 1993).

Since we are not making any assumptions regarding the underlying distributions of neither
MI nor MIm, it may be wise to consider median-based measures as well. Thus, we also included
the following mutagenicity indices

M̃Ik =
Q2(yk1, yk2, . . . , yknk

)

Q2(y01, y02, . . . , y0n0))
=
ỹk
ỹ0

(3)

and

M̃Imk = Q2

(
yk1
y01

,
yk2
y01

, . . . ,
yknk

y01
, . . . ,

yk1
y0n0

,
yk2
y0n0

, . . . ,
yknk

y0n0

)
(4)

whereQ2(·) is the second quantile of the sample (i.e., the sample median) and the other quantities
have already been defined. A common dispersion measure for the median is known as dispersion
coefficient (DC) and, although useful for data visualization, one usually does not use DCs to
obtain CIs for the median. Instead, as in p. 120 of Zar (2010), we used binomial CIs, both
exact and asymptotic. Finally, we applied nonparametric bootstrap and jackknife methods for
bias correction and percentile-based CI estimation for M̃I and M̃Im (Equations (33) and (44),
respectively).

For the simulations, we used one of the most recommended experimental scheme: three
replicates of each dose (of a hypothetical substance) plus the negative control, in a completely
random design (CRD) (Umbuzeiro et al. 2009). For the response variable (number of revertants
in each experimental unit), we supposed both Poisson and negative binomial (NB-2, see Law-
less (1987), for instance) distributions, to accommodate overdispersion, since it is a common
phenomenon that arises with count data and particularly with the AT (Bernstein et al. 1982;
Breslow 1984). We considered four levels of overdispersion (in some arbitrary unit): 0 (Poisson
distribution), 1 (NB-2 with size parameter k = 100), 2 (NB-2 and k = 50) and 4 (NB-2 and
k = 25).

In all scenarios, we varied the “true MI”(herein denoted by mutagenic effect or simply
δ) ranging from 1 to 9 in steps of 0.08, totaling 101 values for δ per simulation. For the
negative control, we considered the population expectation to be 110 colonies, which reflects the
expected number of spontaneous revertants for the TA100 strain (Mortelmans and Zeiger 2000).
We performed 10,000 simulations for each level of dispersion, thus totaling 40,000 simulations.
Within each simulation, we used 1,000 bootstrap samples.
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Results and Discussion

We found a clear tendency for the bias of all point estimators to increase with overdispersion
level, though they appeared robust against δ (Figure 11). Nevertheless, the bias of any estimator is
rather small, up to an overestimation of 5% its true value, particularly for the MIm (Equation (22))
in the scenarios simulated using NB-2 with k = 25. The resampling estimation methods generally
did not produce neither increase nor decrease of the percentage bias, except maybe for the
jackknifed M̃Im, whose biases were robust against overdispersion.
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Figure 1: Percentage bias of different estimators (averaged by estimation method) according to
the true MI. Symbols: lMI; nMIm; lM̃I; nM̃Im. Overdispersion levels: OD=0 (Poisson), OD=1
(negative binomial with k = 100), OD=2 (negative binomial with k = 50) and OD=4 (negative
binomial with k = 25).

Regarding the mean squared error (MSE), the best performances (smaller values of MSE)
were for the MI and MIm, despite the fact that the MSE increases with both overdispersion
level and δ. Although not by much, the jackknife version of all indices showed the worst point
estimation performances using the MSE criterion (Figure 22).

The precision of all evaluated CIs decrease with both, mutagenic effect and overdispersion.
Percentile-based and normal bootstrapped CIs were the most precise and most robust against
the choice of mutagenic index, while asymptotic normal, exact binomial and asymptotic binomial
varied most in precision (Figure 33).

The accuracy of all CIs is relatively robust against overdispersion and mutagenic effect,
although only asymptotic normal and jackknifed normal CIs for the MIm met the minimum,
nominal confidence level of 95% (Figure 44).

The analysis quinoline data (Margolin et al. 1981) is presented in Table 1 (interval estima-
tion). If one would invert all CIs to test a hypothesis such as H0 : MI ≤ 2 vs. H1 : MI > 2 (i.e.,
the 2-fold rule hypothesis test), then they would find no evidence of mutagenic action of quinoline
over TA98 strain, for all evaluated doses and all mutagenicity indices, at some 0.01 < α < 0.05
nominal significance level and an appropriate multicomparison correction.
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Figure 2: Mean squared error according to the true MI. Symbols: lMI; nMIm; lM̃I; nM̃Im.
Estimation methods: (A) standard (plug-in) estimator; (B) bias-corrected jackknife; (C) bias-
corrected bootstrap. Overdispersion levels: OD=0 (Poisson), OD=1 (negative binomial with
k = 100), OD=2 (negative binomial with k = 50) and OD=4 (negative binomial with k = 25).
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Figure 3: CI length (precision) of different interval estimators. Asy-N: asymptotic normal; Ext-
B: exact binomial; Asy-B: asymptotic binomial; Jac-N: jackknifed normal; Boo-N: bootstrapped
normal; Boo-P: percentile-based bootstrap interval. Blue: OD=0 (Poisson); green: OD=1
(negative binomial with k = 100); yellow: OD=2 (negative binomial with k = 50); and red:
OD=4 (negative binomial with k = 25).
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Figure 4: Effective level of confidence (accuracy) of different interval estimators averaged by
mutagenicity effect. Each panel contains the available methods of interval estimation for (A)
MI; (B) MIm; (C) M̃I; and (D) M̃Im.

The results corroborate our initial hypotheses (i.e., biases and variances increasing with
overdispersion and typical lower precision in scenarios of higher mutagenic effect) and some of
them are useful in choosing a particular mutagenicity index and its estimation method.

On the one hand, if one is interested in point estimation, jackknifing the M̃Im is a good
choice if overdispersion information in the dataset is either unavailable or cannot be extracted.
On the other hand, if one finds it important to minimize the variance, allowing for somewhat
more biased point estimation, then they should certainly use the bootstrapped MIm.

If one is interested in interval estimation, using the asymptotic-normal interval for the MIm
is the only reasonable choice, since it meets the nominal confidence level, did not show loss in
precision compared to other methods and is easier to compute than its jackknifed counterpart.

Next, we shall explore the role of MIs (and their possible associated errors) in mutagenicity
assessment in different studies. Please note that we are not claiming that, neither experimental
nor analytical, misconduct was indeed committed in any of the examples given below. We are
merely stating and discussing the immediate issues that may arise whenever one chooses to make
conclusions based solely on these simplistic measures (i.e., the MI and its modified versions).

Rather recently, Gupta et al. (2014) evaluated the sensitivity of three strains of S. ty-
phimurium to hospital wastewater. They took a different approach to obtain mean MIs and
standard deviations, by averaging the observed values among three independent experiments,
each with three replicates. Such a procedure may have its own statistical issues, although our
focus here is simply discussing the mutagenic effects they found for TA98 and TA100 strains.
Despite the weakly positive mutagenicity, they recommend the continuous assessment of Jaipur
and Delhi hospital wastewaters by the AT, since they potentially cause both frame-shift and base
pair substitution mutations. In this case, only relatively minor, economic and human resources
are of concern, since the most dangerous problem would be actually reporting a false negative
(similar to a type-I error), which is less likely than a false positive, according to our results.
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Table 1: Interval estimation of different mutagenicity indices, according to TA98 revertant count
in each dose of quinoline (µg/plate), and their respective bootstrap and jackknife versions.
Number in parenthesis (·,·) denote the lower and upper bounds of each 95% confidence interval.

Dose Index Asy-N Ext-B Asy-B Jac-N Boo-N Boo-P
10 MI (0.62,1.07) * * (0.25,1.38) (0.53,1.13) (0.61,1.22)
10 MIm (0.36,1.46) * * (0.36,1.46) (0.61,1.22) (0.62,1.22)
10 M̃I * ** ** (0.32,1.44) (0.37,1.28) (0.55,1.40)
10 M̃Im * (0.63,1.19) (0.62,1.20) (0.00,1.69) (0.50,1.12) (0.62,1.22)
33 MI (0.38,1.93) * * (0.34,1.88) (0.60,1.64) (0.73,1.80)
33 MIm (0.23,2.25) * * (0.23,2.25) (0.69,1.77) (0.75,1.85)
33 M̃I * ** ** (0.47,2.07) (0.41,2.05) (0.55,2.20)
33 M̃Im * (0.77,1.72) (0.76,1.73) (0.40,1.75) (0.49,1.57) (0.75,1.85)

100 MI (0.47,3.47) * * (0.58,3.22) (0.99,2.89) (1.20,3.16)
100 MIm (0.26,3.97) * * (0.26,3.97) (1.16,3.11) (1.23,3.24)
100 M̃I * ** ** (0.73,3.27) (0.36,3.37) (0.93,4.00)
100 M̃Im * (1.30,2.85) (1.29,2.86) (0.98,3.09) (0.84,2.79) (1.23,3.24)
333 MI (1.36,2.09) * * (0.50,2.81) (1.10,2.28) (1.29,2.49)
333 MIm (0.26,2.94) * * (0.77,2.94) (1.26,2.46) (1.29,2.49)
333 M̃I * ** ** (0.68,3.03) (0.90,2.69) (1.14,2.73)
333 M̃Im * (1.32,2.51) (1.31,2.53) (0.52,3.52) (1.17,2.38) (1.29,2.49)

1000 MI (0.35,2.39) * * (0.40,2.24) (0.67,2.01) (0.85,2.14)
1000 MIm (0.20,2.74) * * (0.20,2.74) (0.79,2.17) (0.87,2.23)
1000 M̃I * ** ** (0.48,2.15) (0.12,2.19) (0.69,2.80)
1000 M̃Im * (0.93,1.98) (0.93,2.00) (0.54,1.83) (0.51,1.89) (0.87,2.23)

Asy-N: asymptotic normal; Ext-B: exact binomial; Asy-B: asymptotic binomial; Jac-N: jackknifed normal; Boo-N: bootstrapped
normal; Boo-P: percentile-based bootstrap interval. * method is not suited for the particular index; ** sample size is not enough
to apply the method.

One should be aware that false positives are not always the lesser problem, even though
most researchers are used to adopting the traditional 0.05 nominal level of significance (i.e., the
probability of committing a type-I error and letting the probability of type-II error vary freely).
Takemura et al. (2010) evaluated the pyrogallol-induced mutagenicity in S. typhimurium strains
and they found lower MIs in the plates treated with antioxidants. Thus, they conclude that
substances such as ascorbic acid (AA) present a protection effect against the hair dye ingredient
(i.e., pyrogallol). Since the MIs they found in plates containing only pyrogallol range from 2.1 to
3.8, in average for TA100, and the reduction of revertants in the lowest concentration of AA is
roughly 60%, then the protection of said antioxidant is ranging from 1.26 to 2.28 in terms of MIs.
Depending on the fold rule adopted, these measures imply negative mutagenicity effect (which,
in turn, corroborate their conclusion), even though such values can be expected to happen by
chance alone in 95% of similar experiments, as our results show. In this case, a false positive may
have been reported, analogous to a type-II error, further raising human health risk awareness.

Although varying a evaluating different sample sizes were not our objective, we must empha-
size that protocol-recommended samples sizes are too small so that all the simplistic measures
we took into consideration in this study can hardly be trustworthy from a statistical standpoint –
which enlightens, though does not justify, the reasons behind the tedious, widespread argument
that statistical analysis of AT data is either negligible or unnecessary. Indeed, as pointed out
by several biostatisticians (Bernstein et al. 1982; Breslow 1984; Butturi-Gomes 2015; Hamada
et al. 1994; Kim and Margolin 1999; Krewski and Franklin 1991; Krewski et al. 1993; Margolin
et al. 1981; Myers et al. 1981; Stead et al. 1981), model-based measures and/or model fitting
(e.g., regression analysis) are likely to be the better tools of choice whenever analyzing AT data.

In conclusion, the proposed indices had similar point and interval perfomances compared to
the usual one, although the jackknifed MIm and the bootstraped MIm were slightly better overall.
Furthermore, overdispersion showed to be an important factor whilst estimating mutagenic
indices, diminishing their predictive capabilities.
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