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Abstract: In this paper, a new three-dimensional autonomous chaotic system is
presented with nine terms including three multipliers, which is different from the
Lorenz system and other existing systems. Basic dynamical properties of the new
system are investigated via equilibria, Lyapunov exponent spectrum, a dissipative
system, phase portraits, the Poincaré map and bifurcation diagrams. The compound
structures of this new system are also analyzed. The theoretical analysis and numer-
ical simulation validate the main results of this paper.
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Introduction

The first research about of three-dimensional chaotic systems was done by Ed-
ward N. Lorenz in 1963 (LORENZ, 1963). After that many new three-dimensional
chaotic attractors have been proposed by researchers, such as the Rössler system
(RÖSSLER, 1976), the Chen system (CHEN; UETA, 1999), the Lü system (LÜ;
CHEN, 2002), and the Liu system (LIU et al., 2004). Chaos, as an interesting
complex nonlinear phenomenon in nature, can be employed in the vast areas of sci-
ence and technology, such as information and computer sciences, biomedical systems
analysis, flow dynamics and liquid mixing, economics, encryption and secure commu-
nications, nonlinear circuits, synchronization, and so on (BUSCARINO et al., 2012;
CHEN; DONG, 1998; CHEN; LAI, 1998; GUAN; LIU, 2010; KILIÇ; SARAÇOǦLU;
YILDIRIM, 2006; LIU, 2012; LIU; GUAN, 2011; SCHIFF; JERGER; DUONG,
1994; WANG; TANG; ZHANG, 2012; WANG et al., 2002; WU et al., 2007, 2012;
ZHANG et al., 2013). Also, in the recent decades fractional order differential equa-
tions (see Aminikhah, Refahi Sheikhani and Rezazadeh (2015b, 2016a, 2016b);
Mashoof and Refahi Sheikhani (2017a, 2017b), Mashoof, Refahi Sheikhani and
Saberi Najafi (2017); Refahi Sheikhani and Mashoof (2017); and Refahi Sheikhani et
al. (2012)) especially studying fractional version of these systems is important, for
example see Daftardar-Gejji and Bhalekar (2010); and Aminikhah, Refahi Sheikhani
and Rezazadeh (2013) and references therein.

In this paper a new three-dimensional chaotic system containing nine terms
including three multipliers is proposed to introduce the nonlinearity necessary for
folding trajectories. The theoretical analysis and numerical simulation demonstrate
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apparently that proposed system is similar to Lorenz and other chaotic attractors,
but its topological structure is different from any existing chaotic attractors.

The rest of this article is organized as follows. Section 2 introduces the design of
a new chaotic system. Section 3 describes some fundamental properties of the new
system. Section 4 shows forming mechanism of the new chaotic system. Finally,
conclusions are given in section 5.

A new three-dimensional chaotic attractor

The new chaotic system is expressed by the following differential equations:
ẋ = −ax+ byz − cy
ẏ = y − dxz + kz
ż = −z +mxy − nx

(1)

where x, y and z are the states and the constants a, b, c, d, k, m , n are positive
parameters of the system. The new system (1) has totally nine terms on the right-
hand side with three different nonlinear items.

2.1. Numerical simulation of the new chaotic attractor

Suppose that a = 4, b = 3, c = 0.079, d = 7.4, k = 0.0808, m = 2.011, n = 0.08.
With the given parameters and initial conditions (x0, y0, z0) = (3, 2, 1), system (1)
has a single 4-scroll chaotic attractor that demonstrates abundant complex behaviors
of chaotic dynamics. Using MATLAB program, the numerical simulation has been
completed. Figures 1(a)-(d) show the trajectory of the system (1) for a three-
dimensional view, an x–y phase plane, an x–z phase plane and a y–z phase plane,
respectively. Apparently, the strange attractors in system (1) are different to Lorenz
and any existing chaotic attractors. As it is observed this chaotic attractor is a
butterfly shaped attractor in x–z phase plane.

Some fundamental properties of the new chaotic system

Equilibria and stability

The equilibria of the new chaotic system (1) can be obtained by solving the
equations: 

−ax+ byz − cy = 0
y − dxz + kz = 0
−z +mxy − nx = 0

(2)

The system (2) has five equilibrium points, which are respectively described as fol-
lows:

O (0, 0, 0) , E1 (x1, y1, z1) , E2 (x2, y2, z2)

E3 (x3, y3, z3) , E4 (x4, y4, z4)
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(a) (b)

(c) (d)

Figure 1: (a) Three-dimensional view. (b) x-y phase plane strange attractors. (c)
x-z phase plane strange attractors. (d) y-z phase plane strange attractors.

We operate above these nonlinear algebraic equations and obtain

O (0, 0, 0) , E1 (−0.2484,−0.8230, 0.4288) , E2 (0.2717, 0.8619, 0.4466)

E3 (−0.2612, 0.8113,−0.4029) , E4 (0.2590,−0.7723,−0.4208)

For the first equilibrium O (0, 0, 0), the system (1) is linearized (see for example
Khalil (1992); and Slotine and Li (1991)), the Jacobian matrix is defined as

J0 =

 −a bz − c by
−dz 1 −dx+ k

my − n mx −1

 =

 −4 −0.079 0
0 1 0.0808

−0.08 0 −1

 .
By letting |λI − J0| = 0 and solving it (see for example Saberi Najafi; Edalatpanah
and Refahi Sheikhani (2014)), the eigenvalues of J0 are obtained as follows:

λ1 = −4, λ2 = −1.0001, λ3 = 1.0001.
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As it is seen λ3 is a positive real number, λ1 and λ2 are two negative real numbers.
Consequently, the equilibrium O (0, 0, 0) is a saddle point and the new system (1) is
unstable at O equilibrium point.

Next, linearizing the system (1) about the other equilibria such as E1, E2, E3

and E4 yields the following characteristic operation.
For equilibrium point E1, it has a Jacobian matrix equal to

J1 =

 −a bz − c by
−dz 1 −dx+ k

my − n mx −1

 =

 −4 1.2075 −2.4691
−3.1733 1 1.9193
−1.7351 −0.4996 −1

 .
We let |λI − J1| = 0.

The corresponding eigenvalues of the equilibrium point E1(x1, y1, z1) are

λ1 = −4.7942, λ2 = 0.3971 + 1.7765i, λ3 = 0.3971− 1.7765i.

Here λ1 is a negative real number; λ2 and λ3 become a pair of complex conjugate
eigenvalues with positive real parts. The equilibrium point E1 is a saddle-focus point
and this equilibrium point is unstable.

For equilibrium point E2, we think over corresponding linearization of state equa-
tions (1), it has a Jacobian matrix equal to

J2 =

 −4 1.2609 2.5858
−3.3051 1 1.9298
1.6533 0.5464 −1

 .
By letting |λI − J2| = 0, the corresponding eigenvalues of E2(x2, y2, z2) are

λ1 = −4.7729, λ2 = 0.3864 + 1.8672i, λ3 = 0.3864− 1.8672i.

Results show that λ1 is a negative real number, λ2 and λ3 form a complex conjugate
pair and their real parts are positive. Equilibrium point of E2 is also a saddle-focus
point and this equilibrium point is unstable.

For equilibrium point E3, has a Jacobian matrix equal to

J3 =

 −4 −1.2877 2.4339
2.9815 1 2.0136
1.5515 −0.5253 −1

 .
We let |λI − J3| = 0, the corresponding eigenvalues of the equilibrium point E3(x3, y3, z3)
are

λ1 = −4.6878, λ2 = 0.3439 + 1.7963i, λ3 = 0.3439− 1.7963i.

Here λ1 is a negative real number, λ2 and λ3 form a complex conjugate pair and
their real parts are positive. Equilibrium point of E3 is also a saddle-focus point
and this equilibrium point is unstable.

For equilibrium point E4, has a Jacobian matrix equal to
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J4 =

 −4 −1.3412 −2.3170
3.1136 1 −1.8357
−1.6332 0.5208 −1

 .
By letting |λI − J4| = 0, the corresponding eigenvalues of E4(x4, y4, z4) are

λ1 = −4.6461, λ2 = 0.3230 + 1.8015i, λ3 = 0.3230− 1.8015i.

Results show that λ1 is a negative real number, λ2 and λ3 form a complex conjugate
pair and their real parts are positive. Equilibrium point of E4 is also a saddle-focus
point and so, this equilibrium point is unstable.

The observations show that the five equilibrium points of the nonlinear systems
are all saddle focus-nodes.

A dissipative system and the existence of attractor

The divergence of flow of the system (1) is given by

div V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −a+ 1− 1 = −a = p

where p = −4. Since p is less than zero, therefore the system (1) is a dissipative
with an exponential rate of contraction as

dV

dt
= ept = e−4t.

As a result

V (t) = V (0) ept = V (0) e−4t.

This means that any initial volume V0 containing the system trajectories becomes
zero as t → ∞ at an exponential rate of −4. Therefore, all this dynamical system
orbits are ultimately confined to a specific limit set of zero-volume, and the asymp-
totic motion settles onto an attractor in the three-dimensional phase plane of the
system (1). So, we conclude the dynamical system finally goes toward an attractor
as t→∞.

Lyapunov exponents and Lyapunov dimension

Chaotic systems are described by how rapidly close initial conditions diverge
from each other. One way to calculate this rate of separation is via the Lyapunov
exponents. The Lyapunov exponents measure the average exponential rates of di-
vergence or convergence of nearby trajectories in phase space. A system with at
least one positive Lyapunov exponent is said to be chaotic (STROGATZ, 1994).

When a = 4, b = 3, c = 0.079, d = 7.4, k = 0.0808, m = 2.011, n = 0.08 by
applying the Wolf algorithm (WOLF et al., 1985), the Lyapunov exponents of the
new system (1) are determined with a normalized step-sized h = 0.01 as follows (see
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figure 2):

λL1 = 0.2736, λL2 = −0.01318, λL3 = −4.260.

Since one of the Lyapunov exponents is positive, thus the proposed nonlinear system
is chaotic. In addition, the Lyapunov dimension of this attractor is

DL = j +
1

|λLj+1|

j∑
i=1

λLi = 2 +
(λL1 + λL2)

|λL3|
= 2 +

0.2736 + (−0.01318)

|−4.260|
= 2.0611.

As it is observed, the Lyapunov dimension of the system (1) is fractional.

Figure 2: The Lyapunov exponents of the new chaotic system.

Poincaré maps, waveforms, spectrum and bifurcation diagram

The dynamical behaviors of the new chaotic attractor can be further demon-
strated by means of Poincaré maps, waveforms, spectrum and bifurcation diagram.
Figures 3(a)-(c) show the Poincaré maps in the planes where x = 0, y = 0 and
z = 0 respectively. It is seen that the Poincaré maps of the attractors in figures 3(a)
and 3(b) consist of symmetrical and almost symmetrical branches. In figure 3(c)
the Poincaré map demonstrates a diagonal distribution. The reason for it is found
from the fact that the waveforms of x(t) and y(t) have almost the same behavior.
Figure 4 illustrates the waveform of y(t) in the time domain. The waveform of y(t)
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is not periodic. The power spectrums of the signal y(t) of the system (1) and Lorenz
system (LORENZ, 1693) are given in figures 5(a) and 5(b).

Figure 6 shows a bifurcation diagram of the system (1) derived by studying the
peak of y (‘y max’) when parameter a varies from 1.8 to 6 with b = 3, c = 0.079,
d = 7.4, k = 0.0808, m = 2.011, n = 0.08. In this bifurcation diagram we see some
periodic windows in the chaotic region.

(a)

(b) (c)

Figure 3: Poincaré maps in the planes where (a) x = 0, (b) y = 0, (c) z = 0.

Forming mechanism of new chaotic system

In order to investigate the compound structures (LÜ; CHEN; ZHANG, 2002)
of the new system (1), let us consider its controlled system as below:

Sigmae, Alfenas, v.6, n.1, p. 1-14. 2017.



ISSN: 2317-0840 Gholamin, Refahi Sheikhani and Ansari (2017) 8

Figure 4: A chaotic waveform of y(t) in the time domain


ẋ = −ax+ byz − cy
ẏ = y − dxz + kz + u
ż = −z +mxy − nx

(3)

In system (3) by changing the parameter u, considered as the “controller”, one can
see different dynamical behaviors. It should be mentioned that the value of u can
be changed within a certain range.

In here, we will consider the parameters and initial values of the system (3) as
before.

When u = 0.47, the corresponding attractor of the controlled system is evolved
into the single right up scroll attractor; it is only one quarter-image of the original
attractor in this time (see figure 7(a)). Now, assume that u = −0.28, the corre-
sponding attractor of the controlled system is evolved into the single right down
scroll attractor; it is only one quarter-image of the original attractor in this time
(see figure 7(b)).

A summary of the parameter range for dynamical behaviors of the controlled system
(3) is as follows:

• When u ≥ 4.63, the system (3) converges to a point. Figure 8(a) illustrates
convergence to a point at u = 4.63.

• When 0.77 ≤ u ≤ 4.62, the system (3) has limit cycles. Figure 8(b) illustrates
a limit cycles at u = 2.69.

• When 0.53 ≤ u ≤ 0.76, the system (3) evolves into period-doubling bifurca-
tions. Figure 8(c) illustrates a period-doubling bifurcation at u = 0.75.

Sigmae, Alfenas, v.6, n.1, p. 1-14. 2017.



ISSN: 2317-0840 Gholamin, Refahi Sheikhani and Ansari (2017) 9

Figure 5: Power spectrum of the signal y (t) of (a) the new system (1), (b) Lorenz
system.

• When 0.41 ≤ u ≤ 0.52, the system (3) becomes a right up (or a right down)
quarter-image attractor. For example, see Figures 7(a) (u = 0.47) and 7(b)
(u = −0.28).

• When 0.01 ≤ u ≤ 0.40, the system (3) displays partial attractors, which are
bounded in this time. Figure 8(d) illustrates a partial attractor at u = 0.15.

• When u = 0, the system (3) demonstrates a complete attractor. Figure 1
illustrates a complete attractor.

Figure 6: A bifurcation diagram of the new system (1) obtained by studying the
peak of y (‘y max’) versus the parameter a.
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Conclusion

The current article proposed a new three-dimensional autonomous chaotic
system. The new attractor consists of nine terms in three first-order autonomous
ordinary differential equations with three multipliers. The new system was analyzed
both theoretically and numerically by studying some fundamental dynamical char-
acteristics such as equilibria, Lyapunov exponent spectrum, a dissipative system,
phase portraits, the Poincaré map, bifurcation diagrams and compound structures.
The results demonstrated the new attractor is different from the Lorenz attractor
and any existing chaotic attractors.

During recent decades theory of fractional order derivatives gained a special in-
terest (see Aminikhah, Refahi Sheikhani and Rezazadeh (2015a); Ansari and Refahi
Sheikhani (2014); and Rezazadeh, Aminikhah and Refahi Sheikhani (2016)). As
future work, the system reported in this article can be also investigated from this
perspective.

(a) (b)

Figure 7: x-y phase plane of the system (3) at (a) u = 0.47, (b) u = −0.28.

Sigmae, Alfenas, v.6, n.1, p. 1-14. 2017.



ISSN: 2317-0840 Gholamin, Refahi Sheikhani and Ansari (2017) 11

(a) (b)

(c) (d)

Figure 8: x-y phase plane of the system (3) at (a) u = 4.63, (b) u = 2.69, (c)
u = 0.75, (d) u = 0.15.
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