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A trigonometry approach to balancing numbers and their related sequences
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Abstract: The balancing numbers satisfy the second order linear homogeneous difference equa-
tion Bn+1 = 6Bn − Bn−1, on the other hand the Fibonacci numbers are solution of the second
order linear homogeneous difference equation Fn+1 = Fn + Fn−1, where Bn and Fn denote the
nth balancing number and nth Fibonacci number respectively. In a paper, Smith introduced Fi-
bonometry in connection with a differential equation called Fibonometric differential equation.
In this study, we first introduce the balancometric differential equation and then obtain the bal-
ancometric functions as solutions of this equation.
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Introduction

The study of number sequences has been a source of attraction to the mathematicians since
ancient times. Since then many of them are focusing their interest on the study of the fascinating
triangular numbers. Behera and Panda (1999) defined balancing numbers n as solutions of the
Diophantine equation 1 + 2 + . . . + (n − 1) = (n + 1) + (n + 2) + . . . + (n + r), calling r as
balancer corresponding to n. By slightly modifying the Diophantine equation, Panda and Ray
(2005) introduce cobalancing numbers and cobalancers as solution of the Diophantine equation
1+2+ . . .+n = (n+1)+(n+2)+ . . .+(n+R), calling R ∈ Z+ as the cobalancer corresponding
to n. The cobalancing numbers are linked to a third category of triangular numbers that are
expressible as product of two consecutive natural numbers (approximately as the arithmetic

mean of squares of two consecutive natural numbers i.e., n2+(n+1)2

2 ≈ n(n+ 1).
In a subsequent paper, Liptai (2005) added another interesting result to the theory of bal-

ancing numbers by showing that the only balancing number in the Fibonacci sequence is 1.
Also in Liptai (2006), he proved that there are no Lucas balancing numbers in the sequence
of Fibonacci numbers. Subsequently, Panda (2009) established many fascinating properties of
balancing numbers, where he has proved some results resembling trigonometric identities. For
some recent development of balancing numbers and their related sequences one can go through
Komatsu and Ray (2016), Liptai, Panda and Szalay (2016), Patel and Ray (2016), Ray and
Patel (2016), and Rout (2016).

Motivated by Fibonometry introduced by Smith (2014), in this paper, the concept of bal-
ancometry is studied. The balancometric functions are being obtained from a second order
linear differential equation y′′−6y′+y = 0, which we call as balancometric differential equation.
Clearly, the differential equations

y′′ + y = 0, y(0) = 0, y′(0) = 1 and y′′ − y = 0, y(0) = 0, y′(0) = 1

lead to the circular trigonometry and the hyperbolic trigonometry respectively. On the other
hand, the initial value problem

y′′ − 6y′ + y = 0, y(0) = 0, y′(0) = 1 (1)

known as balancometric differential equation is analogue to the well known recursion formula
for balancing numbers

Bn = 6Bn−1 −Bn−2, B0 = 0, B1 = 1, n ≥ 2. (2)
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It is well known that the sine and cosine functions are solution of the differential equation
y
′′

+ y = 0. This paper investigates some of the topics associated with the trigonometry derived
from the balancometric differential equation. The functions to be developed will be defined as
the balancometric functions.

Balancometric sine and cosine functions

The solution of balancometric differential equation is y = eλ1x−eλ2x
λ1−λ2 where λ1 and λ2 are

indeed, the solutions of the equation λ2 − 6λ+ 1 = 0. Based on the well known pattern for the
classical circular and hyperbolic trigonometry functions

sinx =
eix − e−ix

2i
, cosx =

eix + e−ix

2i
, sinhx =

ex − e−x

2
and coshx =

ex + e−x

2
,

the balancometric sine and balancometric cosine are defined as follows:

Definition 1. The balancometric sine function is

sinBx =
eλ1x − eλ2x

λ1 − λ2
,

where λ1 = 3 +
√

8 and λ2 = 3−
√

8.

It can be observed that, if
∞∑
n=0

anx
n is a power series solution of the balancing differential

equation (11), the recursion relation will be

an+2 =
6(n+ 1)an+1 − an

(n+ 1)(n+ 2)
. (3)

With the help of the recursion formula (33), we develop an interesting relation between the power
series coefficients and the sequence of balancing numbers as follows.

Theorem 2. For nth balancing number Bn,

an =
Bna1 −Bn−1a0

n!
.

Proof. Mathematical induction comes into the picture to prove this theorem. Clearly, the theo-
rem is true for n = 1 as a2 = B2a1−B1a0

2! = 6a1−a0
2! by (33). Assume that it holds for all n ≤ (k+1)

where k ∈ Z+. Now, by (33) and from the hypothesis, we obtain

(k + 1)(k + 2)ak+2 = 6(k + 1)ak+1 − ak

= 6

[
Bk+1a1 −Bka0

k!

]
− Bka1 −Bk−1a0

k!

=
(6Bk+1 −Bk)a1 − (6Bk −Bk−1)a0

k!
=
Bk+2a1 −Bk+1a0

k!
,

which follows the proof of the theorem.

Following theorem establishes an alternating expression for balancometric sine function.
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Theorem 3. The balancometric sine function is

sinBx =

∞∑
n=0

Bn
xn

n!
,

where Bn is the nth balancing number.

Proof. By virtue of Theorem 22, the solution of the differential equation (11) will take the form

y = a0 + a1x+

(
6a1 − a0

2!

)
x2 + . . .+

(
Bna1 −Bn−1a0

n!

)
xn + . . . .

Applying the initial conditions, we get a0 = 0 and a1 = 1 and therefore, we obtain

y = x+

(
6

2!

)
x2 +

(
35

3!

)
x3 + . . .+

(
Bna1 −Bn−1a0

n!

)
xn + . . .

=
∞∑
n=0

Bn
xn

n!
,

which completes the proof.

Following theorem establishes the convergence of the balancometric sine function.

Theorem 4. The series expansion for sinBx is absolutely convergent for all x ∈ R.

Proof. By ratio test for convergence and since lim
n→∞

Bn+1

Bn
= λ1 = 3 +

√
8, we obtain

lim
n→∞

∣∣∣∣∣∣
Bn+1

(n+1)!

Bn
n!

∣∣∣∣∣∣ = lim
n→∞

[
1

(n+ 1)

Bn+1

Bn

]

= 0 · lim
n→∞

Bn+1

Bn
= 0 · λ1 = 0,

implies the series | sinBx| is convergent. Thus the series expansion for sinBx is absolutely
convergent for all x ∈ R.

Now, we introduce the balancometric cosine function as the derivative of balancometric sine
function, that is, cosBx = d

dx sinBx, or equivalently, from Theorem 33, we have the following
definition.

Definition 5. The balancometric cosine function is

cosBx =
λ1e

λ1x − λ2eλ2x

λ1 − λ2
=

∞∑
n=0

Bn+1
xn

n!

where λ1 = 3 +
√

8 and λ2 = 3−
√

8.

Since the derivative of an absolutely convergent series is convergent, the balancometric cosine
function cosBx is also convergent.
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Balancometric tangent and cotangent

In this section, we will follow the familiar patterns for the circular and hyperbolic functions
and define the analogous balancometric functions such as balancometric tangent and cotangent
functions. Similar to the definitions of classical tangent and cotangent functions, we introduce
balancometric tangent and balancometric cotangent functions as follows.

Definition 6. The balancometric tangent and balancometric cotangent functions are defined
respectively by

tanBx =
sinBx

cosBx
and cotBx =

cosBx

sinBx
, sinBx 6= 0.

Since λ1 and λ2 are roots of the equation λ2 − 6λ+ 1 = 0, we notice that, λ21 = 6λ1 − 1 and
using this, we get λ31 = λ1(6λ1−1) = 6(6λ1−1)−λ1 = 35λ1−6. Thus, we suggest the following
proposition.

Proposition 7. For n ≥ 1,

(i) λn1 = Bnλ1 −Bn−1,
(ii) λn2 = Bnλ2 −Bn−1.

Proof. The first part of the proposition (i) clearly holds for n = 1 and n = 2. Assume that it is
true for all n ≤ k. Now by the recurrence relation (22) and from the hypothesis, we obtain

λk+1
1 = λ1(Bkλ1 −Bk−1)

= Bk(6λ1 − 1)− λ1Bk−1
= Bk+1λ1 −Bk.

This completes the proof of (i). Similarly one can prove (ii).

The following theorems demonstrate the alternative expressions for balancometric tangent
and cotangent functions.

Theorem 8. The balancometric tangent function is of the form

tanBx = λ2 + (34λ2 − 6)

[ ∞∑
n=0

(Bnλ2 −Bn−1)2 e−2
√
8nx

]
,

where λ2 = 3−
√

8.

Proof. By virtue of Definition 66, we have

tanBx =
eλ1x − eλ2x

λ1eλ1x − λ2eλ2x
=

1− e(λ2−λ1)x

λ1 − λ2e(λ2−λ1)x
.

Dividing λ1 into the numerator and denominator and using the fact λ1λ2 = 1, λ1 − λ2 = 2
√

8,
we obtain

tanBx = λ2(1− e−2
√
8x)
(

1− λ22e−2
√
8x
)−1

.
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Expanding the inverse expression and replacing λ22 − 1 with 6λ2 − 2 (as λ2 is a solution of
λ2 − 6λ+ 1 = 0), we get

tanBx = λ2

[
1 + (6λ2 − 2)e−2

√
8x + λ22(6λ2 − 2)e−4

√
8x + λ42(6λ2 − 2)e−6

√
8x + . . .

]
= λ2 + (6λ22 − 2λ2)

∞∑
n=0

λ2n2 e
−2
√
8nx

= λ2 + (34λ2 − 6)

∞∑
n=0

λ2n2 e
−2
√
8nx,

and therefore the theorem follows from Proposition 77.

We can get a similar expression for tanBx in terms of λ1 also.

As a bonus, we observe that the Binet’s formula for balancing numbers can also be derived
from Proposition 77 by subtracting (ii) from (i).

Theorem 9. The balancometric cotangent function is of the form

cotBx =
1

λ2

[
1− (6λ2 − 2)

∞∑
n=0

e−2
√
8nx

]
,

where λ2 = 3−
√

8.

Proof. Again by Definition 66, we have

cotBx =
λ1e

λ1x − λ2eλ2x

eλ1x − eλ2x
.

Dividing λ1e
λ1x into the numerator and denominator and using the fact λ1λ2 = 1, λ1−λ2 = 2

√
8,

we obtain

cotBx =
1− λ22e−2

√
8x

λ2 − λ2e−2
√
8x

=
1

λ2

[
1− (6λ2 − 1)

(
1− e−2

√
8x
)−1]

.

Expanding the inverse expression, we get

cotBx =
1

λ2

[
1− (6λ2 − 2)e−2

√
8x − (6λ2 − 2)e−4

√
8x − . . .

]
=

1

λ2

[
1− (6λ2 − 2)

∞∑
n=0

e−2
√
8nx

]
,

which ends the proof.

Remark 10. For x = 0, the series cotBx is undefined as sinBx = 0. That is, the series fails to

converge since (6λ2 − 2)
∞∑
n=0

1 = (6λ2 − 2) lim
n→∞

n =∞. Further, for any x < 0, each of the terms

in the series for cotBx is a positive power of e, and hence, is greater than 1. Thus, the series
diverges forx ≤ 1. More precisely, the series cotBx converges for x > 0.

Definitions for the balancing secant and cosecant can be obtained analogously and their
series are investigated.
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Fundamental identities of balancometric functions

In circular trigonometry, the identity sin2 x+ cos2 x = 1 leads to the circle x2 + y2 = 1 with
x = sinx, y = cosx whereas in hyperbolic trigonometry, the identity cosh2 x− sinh2 x = 1 leads
to the hyperbola x2−y2 = 1 with x = coshx, y = sinhx. However, the situation is not so direct
in balancometric functions. The following theorem demonstrates this fact.

Theorem 11. The fundamental identities for balancometric functions is

cosB2x− 6 cosBx sinBx+ sinB2x = e6x.

Proof. By virtue of definitions, Definition 11 and Definition 55 and since λ2 − 6λ + 1 = 0 for
λ1 = 3 +

√
8, λ2 = 3−

√
8, we have

cosB2x− 6 cosBx sinBx+ sinB2x

=

[
λ1e

λ1x − λ2eλ2x

λ1 − λ2

]2
− 6

λ1e
λ1x − λ2eλ2x

λ1 − λ2
eλ1x − eλ2x

λ1 − λ2
+

[
eλ1x − eλ2x

λ1 − λ2

]2
=

(λ21 − 6λ1 + 1)e2λ1x

(λ1 − λ2)2
+

(−2 + 6(λ1 + λ2)− 2)e(λ1+λ2)x

(λ1 − λ2)2
+

(λ22 − 6λ2 + 1)e2λ2x

(λ1 − λ2)2
,

which completes the proof.

Remark 12. The cobalancing numbers, Lucas-balancing numbers and Lucas-cobalancing num-
bers are defined recursively by bn+1 = 6bn−bn−1 +2, Cn+1 = 6Cn−Cn−1 and cn+1 = 6cn−cn−1
respectively subject to the respective initial conditions b0 = 0, b1 = 2, C0 = 1, C1 = 3
and c0 = 1, c1 = 7. Arguing as above, we may deduce the cobalanciometric sine, Lucas-
balancometric sine and Lucas-cobalancometric sine respectively as

sin bx =

∞∑
n=0

dn
xn

n!
, where dn = bn +

1

2
, sinLBx =

∞∑
n=0

Cn
xn

n!
and sinLbx =

∞∑
n=0

cn
xn

n!
.

Similarly the cobalancometric cosine, Lucas-balancometric cosine and Lucas-cobalancometric
cosine respectively as

cos bx =

∞∑
n=0

dn+1
xn

n!
, where dn+1 = bn+1+

1

2
, cosLBx =

∞∑
n=0

Cn+1
xn

n!
and cosLbx =

∞∑
n=0

cn+1
xn

n!
.

Conclusion

In this article we have connected balancing numbers and their related sequences to trigonome-
try functions such as sine, cosine, tangent and cotangent functions. We have introduced balanco-
metric differential equation whose solutions are indeed balancometric functions. Some identities
of balancometric functions are also derived using elementary methods.
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