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Modeling count time series: a comparative case study
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Abstract: This paper presents an application for counting data, where the observation-driven and
parameter-driven models are compared. To this purpose, the Generalized Additive Autoregressive Mov-
ing Average (GAM-ARMA) and Non-Gaussian State Space with Exact Marginal Likelihood (NGSSEML)
models are used. Model parameters are estimated using the mazimum likelihood method. The ability of

the procedure to model and forecast real data is presented for the number of chronic obstructive disease
(COPD) cases.
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Modelagem de séries temporais de contagem: um estudo comparativo de caso

Resumo: Esse artigo apresenta uma aplica¢ao a dados de contagem, onde os modelos observation-driven
e parameter-driven sao comparados. Com esse propdsito, os modelos Generalizado Aditivo Autorregres-
siwo Média Mével (GAM-ARMA) e Espago de Estados Nao-Gaussiano com Verossimilhan¢a Marginal
Ezata (NGSSEML) sao utilizados. Pardametros dos modelos sdo estimados utilizando o método de mdzima
verossimilhanca. A capacidade do procedimento de modelar e prever dados reais € apresentada para o
nimero de casos de doenga obstrutiva crénica (COPD).

Palavras-chave: Modelo Observation-driven; GAM-ARMA; NGSSEML; Modelo Parameter-driven; Da-
dos de contagem.

Introduction

Cox (1981) classified two classes of models for Non-Gaussian time-dependent data: observa-
tion-driven model and parameter-driven model. The main difference between the two models is
the way the dependence structure is incorporated into the model. Let {Y}},.y be a time series and
Fi = o{Yi—1,Y;—2,...} the past observation. In the observation-driven model, some conditional
distributions for Y; given F; are assumed and current parameters are deterministic functions of
lagged dependent variables as well as contemporaneous and lagged exogenous variables.

Pioneering work is due to Zeger e Qaqish (1988), who proposed a model for continuous
and counting time series where only the first and second conditional moments are specified. In
Benjamin, Righy e Stasinopoulos (2003), the authors introduced the Generalized Autoregressive
Moving Average (GARMA) model, where the conditional distribution belongs to the exponential
family. Albarracin, Alencar e Ho (2019) proposed the GAR-M model to reduce the problem of
multicollinearity in the GARMA model. Davis e Liu (2012) presented a class of models where the
conditional distribution belongs to the uniparametric exponential family. Rocha e Cribari-Neto
(2009) proposed the Beta Autoregressive Moving Average (BARMA) model for time series that
assume values in the (0, 1) interval. Melo e Alencar (2020) proposed the CMP-ARMA model,
that allows the modeling of underdispersed, equidispersed, and overdispersed data.

f Autora correspondente: (giseleemaia07@gmail.com).
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Another important work in the class of observation-driven models is Davis, Dunsmuir e Streett
(2003), where the GLARMA model was introduced to model count time series. The authors
assume that the observations, conditioned on the past information, follow a Poisson distribu-
tion. Camara et al. (2021) proposed the GAM-ARMA model, which combines the structure of
the Generalized Additive Model (GAM) (HASTIE; TIBSHIRANI, 1990) with the GLARMA
models of Davis, Dunsmuir e Streett (2003) for count time series, incorporating the possibility
of including auxiliary variables that possess a non-linear relationship with the response variable.

In the parameter-driven class, {Y; },c given a latent process {o },cy is assumed to be condi-
tionally independent and parameters vary over time as dynamic processes, assuming a particular
probability distribution. The first parameter-driven model was proposed by Zeger (1988) for
a time series of counts. Davis, Dunsmuir e Wang (2000) also proposed a model for the time
of counts, which is driven by a Gaussian latent factor. Davis e Wu (2009) extended the work
of Davis, Dunsmuir e Wang (2000) to data with overdispersion, using the Negative Binomial
distribution. Maia et al. (2021) proposed the modeling of a wide class of time series, including
nonnegative, count, bounded, binary, and real-valued.

Finally, Gamerman, Santos e Franco (2013) introduced a non-Gaussian State Space model
for non-Gaussian time series and reliability analysis, with exact marginal likelihood, named
NGSSEML. The proposed approach has the characteristic of being simple and flexible, and
results are obtained using the exact marginal likelihood, which is not achieved in other non-
Gaussian state space models. In addition, several distributions belong to the class of NGSSEML
models, such as Poisson, Gamma, Weibull, Laplace, and Normal, among others.

Comparative studies between the observation-driven and parameter-driven classes can be
found in the works of Davis, Dunsmuir e Wang (1999), where review of existing models for the
two classes is performed; Jung e Tremayne (2011) and Jung, Kukuk e Liesenfeld (2006) compare
the two classes based on real data applications and Franco, Migon e Prates (2015) perform a
study comparing the GLARMA and state space models for count data, using Bayesian and
frequentest approaches. In this direction, the purpose of the paper is to give some contribution
in the comparison between the two classes, focusing on time series of count. In the observation-
driven class, we adopt the GAM-ARMA model, while the NGSSMEL model is employed in the
parameter-driven class.

In this work, the comparison between the two classes is based on real data application. In
this application, we adjust the two models to the data and calculate measures to evaluate the
performance of each model. The same assessment is made for predicting future observations,
considering the approach of each model.

The paper is organized as follows. In Section Methodology, we present the two models that
will be compared. In section Parameter Estimation, likelihood inference is developed to obtain
parameter estimates. In Section Forecast, we discuss forecasting procedures based on the two
models. In Section Real Data Application, we analyze the data set, namely, the monthly number
of chronic obstructive pulmonary (COPD) cases. Concluding remarks are addressed in Section
Conclusion.

Methodology

In this section, we present the basic properties of the GAM-ARMA and NGSSEML models
that will be essential for characterizing these models. First, we present the GAM-ARMA, a
generalized additive model for count time series proposed by Camara et al. (2021). Let {Y;},cy
be a count time series, and considering the past observations F;_1 = o(Ys, s <t — 1), define
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Yi| Fi—1 ~ Poisson(u), (1)

where p; is the mean of the conditional distribution. The linear predictor, according to the
definition of the GAM-ARMA model in Camara et al. (2021), is given by

k r
Wy =log(u) = Bo+ Y Biwey + Y s5(wey) + Zi, (2)
j=1 Jj=1
where (z1,...,xp) represent the k explanatory variables linearly related to the response vari-
able, (Bo, ..., Bk) the vector of coefficients of the linear component, (wy,...,w,), represent the

r explanatory variables related in a non-linear way with the response variable through the
smooth curves (s1,...,$,) and Z; has the same structure defined by the GLARMA model
(DAVIS; DUNSMUIR; STREETT, 2003), that is,

Zy =011 +e1)+ -+ Op(Zi—p +e1—p) + 01601+ -+ - + 01—, (3)

where (¢1,...,¢p) and (61, ...,0,) are vector parameters and e; = Yt/}“t, where X € (0,1]. The
t
parameter \ is treated as a constant instead of estimating it.

The curves are estimated using the methodology proposed by (BOOR, 1978), where B-spline
curves are constructed from polynomial parts joined to certain point values (knots). Consider
m (positive integer) B-splines {Bjyd};nzl depending on knots t;,...,tj1144, where d is the order
of the polynomial pieces. The linear combination of B-splines is denoted as spline function and

is given by
m

s = a;Bj(w), (4)
j=1

where {ozj};”:l are coefficients of the B-splines. The B-splines will be a combination of third-
degree polynomials, thus d = 3. The choice of the number and position of the knots is a subject
of debate in several works. In this work, knots are chosen according to a pre-established interval
and are equidistant. However, other selection methods can be found in Eilers e Marx (1996),
Green e Silverman (1994), Friedman e Silverman (1989), Kooperberg e Stone (1991), and Harrel
(2004). The Akaike’s information criterion (AIC) can also be used in choosing the number of
knots, as performed in Camara et al. (2021).

Stationarity results are difficult to obtain in observation-driven models. Davis, Dunsmuir e Streett
(2003) show that stationarity results can be obtained for Wy, when Z; is a moving average pro-
cess, A parameter assumes values within the interval [1/2, 1] and model without covariates. For
the GAM-ARMA model, these specific cases remain valid, but we can show that e; is station-
ary and W; is homogeneous non-stationary. For more details, see Camara et al. (2021) and
Davis, Dunsmuir e Streett (2003).

After a brief presentation of the GAM-ARMA model, we begin the presentation of the
Non-Gaussian State-Space with Exact Marginal Likelihood model (NGSSEML) proposed by
Gamerman, Santos e Franco (2013). Let {y;},.y denote a time series. If the following assump-
tions are satisfied, then the time series belongs to the NGSSEML class of models:

Assumption 1 The probability function can be written in the following form:

(el e, Vi1, 80) = alye, &)y ™" exp(—pee(ye, 1)) (5)

Several distributions belong to the NGSSEML class as Poisson, Gamma, Normal, Weibull,
and Pareto, among many others. However, in this work, we focus on the Poisson distribution.
Then, y € {0,1,...}, Yy = {Yo,y1,...,y}, for t = 1,2,...,, where Y represents previously
available information, a(y:, ) = (v:!)~%, by, ) = v, c(ye,¥) = 1, pg > 0, for all ¢, and
Y= (w7 /B)T
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Assumption 2 If x; is a covariate vector, then we have the relation p = Mg(zy, 8), where g
s the link function, B are the regression coefficients and A\ is the latent state variable to the
description of the dynamic level.

Assumption 3 The following distribution is defined:

)\
t+1 |)\t, Yi, 1 ~ Beta(way, (1 — w)ay),

where 0 < w < 1 and a; will be specified later.
Assumption 4 The prior distribution Ao|Yo ~ Gammal(ag,by) is used for the dynamic level \;.
If the Equation 5 is satisfied, the following results are obtained:

e The prior distribution \|Y;—1 follows a Gamma(ay,_1,by—1), where a1 = way—1 and
bt|t71 = wbi—1.

o 1 = Mg(xy, B)|Yi—1 ~ Gamma(a},_,,ab} where ay, | =wa;—1 and by, | = = wb;_1[g(x] B)]~*

Qyjp—1> WOt — 1) tlt—1

e The posterior distribution of p|Y; is Gamma(af,b;), where af = a;“‘til + b(yt,¢) and
bf = br|t71 + (e, ).
~1
o\ =y [ (z, B)} Yt ~ Gamma(ag, bt), where a; = a1 + b(yt, ) and by = by, +
c(yt,¥)g (33257 B).

e The one-step-ahead predictive density function is given by

L(b(ye, ) + ag—1)aye, ) (by—1)
T(ag—1) [e(ye, ) + byg_y | VoV Tt

where I'(-) is a gamma function and ¢ < n, where n is the size of the time series.

p(ye|Yi1,0) =

Further details on results are provided in Gamerman, Santos e Franco (2013).

Parameter Estimation

In this section, we briefly discuss the approaches used by GAM-ARMA and NGSSEML
models to obtain parameter estimates. Combining (2) and (4), we can write W; as follows

50‘1'26]1'15,]"‘22041] wtz ‘|‘Zt (6)

i=1 j=1

Thus, the parameter vector of the GAM-ARMA model is defined by

0= (BOa"'aBkaal,la-"7ar,m>¢17'"a¢p791>"'79q)'

Define 1, = log f(Y;|Fi—1), where the conditional density f of Y; given F;_; is Poisson.
Therefore, we can write the following log-likelihood function

Z (yeWi (6 t(é))a (7)
t=1

where W; is given by (6). All parameters will be estimated together through the likelihood
function. The Newton-Raphson optimization algorithm is used to obtain the numerical solution
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initialized with zero values for the parameters of term Z;, and for the regression coeflicients, we
used the estimates obtained in the GLM adjustment without the term Z;.

In the NGSSEML class, the parameters are divided into two types: latent states parameters
A+ and fixed parameters 1. For the latent state parameters, on-line and smoothed inferences
can be performed. In the smoothed inference, the estimation of level component is based on all
available information Y,, and smoothing techniques should be used, while in the on-line inference,
the main interest is the on-line distribution A¢|Y;, for all . For more details on inferences see
Sections 2 and 3 of Gamerman, Santos e Franco (2013). For the fixed parameters, the inference
can be performed using the marginal log-likelihood function. Therefore, consider the marginal
log-likelihood function

ImL;Yn) =In [] p(u|Yio1,)

t=74+1
n
> InT(ay,_y +b(ys, ¥)) — InT(afy, ) + ajyy_y In b,y + In(alye, )
t=1+1
- (b(yt’ d}) + a2<|t—1) hl(c(yt? ’Qb) + b:|t—1)a
where 7 is the instant of the first non-zero observation, Y, = (y1,...,¥,) ', and parameters

of the specific model can compose v, in addition to w, . The maximization of the marginal
log-likelihood can be performed using a numerical solution.

Forecast

Following the approach discussed in (DUNSMUIR; SCOTT, 2015), the one-step-ahead fore-
cast Y, 11, given observations up to time n and covariates x,+1 at time n + 1, is obtained as
follows, for GAM-ARMA model. First, we calculate

n+1 n+1,6 + Z Z (67} ] wt i + Zn—l—l;

=1 j=1

where

n+1 Z¢J nt1—j — €nti1—j)

7=1

én—i—l —J- (8)

T MQ

The term Z,,,1 is determined using values of Z; and e; for t < n. The predictive distribution
of Y, 11 is estimated to be f (y|Wn+1), where the density f is given by the conditional distribution
used (in this case Poisson). The estimated density provides a complete description of the forecast,
so we can obtain prediction intervals as well as a single-point forecast (mean, mode, or median).

For the NGSSEML model, the following predictive distributions of future observations are
defined:

e Consider the following evolution equation:

A
Mjaasis |Mign, Yt ~ Beta(w"ay, (1 — w)w"ay),
At+h

for h =0,1,2,.... Y, = {Yo,y1,...,y}, for t = 1,2,..., and Y) represents the past
history.

e If h > 0, the h-step-ahead evolution can be approximated by

Avn| Y, 0 = Gamma(agpie, beyn)e),

where a;p); = wha; and biynjt = whby.
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e Finally, the predictive density function of the observation h steps ahead is given by

CO(Yetrn, ) + appnje) a(Yesn, V) (byppnpe) 1
b ) ayinpe’
L(apqp)e) [e(Ytn, V) + bt+h|t] (Yttho¥)Fapyn|

p(yt+h|th L/J) ~

where y;1 € {0,1,2,... }.

Analytic expressions for these predictive distributions are not available, so all results pre-
sented for forecast in the NGSSEML model are approximate.

Real Data Application

In order to compare the ability of the GAM-ARMA and NGSSEML model, we apply both
models in the analysis of count time series, more specifically, the monthly number of chronic
obstructive pulmonary disease (COPD) cases in the metropolitan area of Belo Horizonte, Brazil.
The period analyzed is from January 2007 to December 2013, however, the last 6 observations are
excluded from the fit with the purpose of comparing the forecasts, and thus n = 78. This dataset
has been analyzed by Camara et al. (2021) under the GAM-ARMA model. Furthermore, works
such as Davis, Dunsmuir e Streett (2003) and Maia et al. (2021) present applications where they
analyze the association between the concentration of atmospheric pollutants and the occurrence
of respiratory diseases. Figure 1 presents the time series of COPD cases and the respective
autocorrelation (ACF) and partial autocorrelation (PACF) functions.

From Figure 1, we observe that the time series presents a seasonal behavior and a positive
trend; thus, the following covariates are considered here: concentration of nitrogen monoxide
(NO), terms of annual and semi-annual seasonality, trend, minimum temperature (T'emp) and
relative humidity (RH) of the air. Therefore, we define the predictor as follows for the GAM-
ARMA model

Wi = BiNO, + Basin(2nt/12) + B3 cos(2mt/12) + By sin(2wt/6) + B5 cos(27t/6)+
Bet + OleBl (Tempt) + O[QJBQ(T(fmpt) + ag,lBg(Tempt) + 041,231 (RHt)—i- (9)
a272B2(RHt) -+ 0437233(RH7§) + Zs,

where NO; and ¢ (trend) show a linear relation, while Temp and RH show a non-linear rela-
tion with COPD. The term Z; is defined as an autoregressive process of order 1. The same
covariates are used in the NGSSEML model besides the definition of the prior distribution
Mol Yo ~ Gamma(0.2,0.1).

Table 1: Parameter estimates and standard errors of the GAM-AR(1) for the COPD time series.

Covariate/par. Estimate Standard Error
NO 0.051 0.003
sin(2mt/12) 0.329 0.051
cos(2mt/12) -0.527 0.064
sin(27t/6) -0.304 0.036
cos(27t/6) -0.260 0.040
trend 0.012 0.001
o1 0.073 0.006

Source: Authors.
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Figure 1: Plots of the monthly number of COPD cases in the metropolitan area of Belo Horizonte
from January 2007 to December 2013 (top) and its associated ACF (bottom to the left) and
PACF (bottom to the right).
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In Tables 1 and 2, we present the maximum likelihood estimates of the parameters and the
respective standard errors for the GAM-AR(1) and NGSSEML models, respectively. Figure 2
presents the plots of the residuals for the two adjustments.

Table 2: Parameter estimates and respective standard errors of the NGSSEML for the COPD
time series.

Covariate/par. Estimate Standard Error
w 0.171 0.027
NO 0.018 0.007
sin(27t/12) 0.513 0.127
cos(2mt/12) -0.413 0.156
sin(27t/6) -0.345 0.064
cos(27t/6) -0.108 0.076
trend 0.008 0.037

Source: Authors.
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Figure 2: Plots of the ACF and PACF of the residuals in the GAM-AR(1) (top) and NGSSEML
models (bottom).
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We observe, from Figure 2, that the residuals are a white noise process, which means that
they are not correlated, revealing a good adjustment. For comparison purposes, we calculated
the following statistics to evaluate the performance of the two fitted models: square root of the
mean square error, SMSE = % S i (v — 9¢)?, the mean absolute error, MAE = % Sy [y — Gl
and the mean absolute percentage error, MAPE = %Z?:l |(y+ — Gt)/yt|, where g, t =1,...,n,
are the fitted values. In Table 3, we present the statistics for each model.

Table 3: In sample SMSE, MAE, and MAPE for the GAM-AR(1) and NGSSEML models.

SMSE MAE MAPE
GAM-AR(1) 359.393 13.664 0.395
NGSSEML 524.458 16.540 0.329

Source: Authors.

From Table 3, the statistics reveal that the adjustment with the GAM-AR(1) model provides
better results.

After verifying the adequacy of the models, we are able to make forecasts. We perform the
one-step-ahead forecast for the last 6 observations of the COPD time series, using the GAM-
ARMA and NGSSEML approaches. Figure 3 presents the one-step-ahead forecast of the COPD
time series (at a 5% significance level), based on the two approaches discussed in Section Forecast
and Table 4 provides the statistics to assess the quality of each of the forecasting approaches.
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Figure 3: One-step-ahead predictions of the COPD time series from ¢ = 79 to t = 84 under the
GAM-ARMA (top) and the NGSSEML (bottom) approach.

GAM-ARMA

250
|

. Data . Fit . Forecast

COPD
150 200
1 1

100
|

50

= M Data
~ | Fit
B Forecast

150
|

COPD
100
|

Month

Source: Authors.

Table 4: Forecast SMSE, MAE and MAPE for the GAM-AR(1) and NGSSEML models.

SMSE MAE MAPE
GAM-AR(1) 219.543 12.682 0.023
NGSSEML 87.258 6.885 0.148

Source: Authors.

The opposite result is observed for the forecast. From Table 4, we obtain better results for
the NGSSEML model.

Conclusion

Based on a real data application, a comparison between the observation-driven and parameter-
driven models was presented. For this, the GAM-ARMA models, proposed by Camara et al.
(2021), and NGSSEML, proposed by Gamerman, Santos e Franco (2013), were used. The GAM-
ARMA and NGSSEML models, were fitted using the GLARMA and NGSSEML packages, re-
spectively. Both models use the maximum likelihood method to estimate parameters. The
forecast carried out was in accordance with the approach of each model, using the forecast and
NGSSEML packages.

According to the application to the COPD time series, we concluded that, to fit a model
for the data, the GAM-ARMA model proved to be more appropriate, i.e. , the fitted model
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is closer to the real data observations, while in the forecast for the last 6 data observations of
COPD time series, we observed an opposite behavior. The NGSSEML model presented better
forecasts when compared to the GAM-ARMA model.

We highlight that these results are valid for this real data application and that simulation
studies should be conducted with the aim of obtaining more information for comparison between
the two models. Furthermore, more real data applications should be evaluated.
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